

Putting patients at the center: Case studies

Dr Po-Hung Lin and Prof. Chang Gon Kim

Adverse events should be reported.

For Korea, healthcare professionals are asked to report any suspected adverse reactions to Astellas Pharma Korea. Inc

(Telephone: +82 10 5254 3389; Email: safety-kr@kr.astellas.com)

Disclaimers

The information, views and opinions presented herein are those of the presenter, and the presenter is solely responsible for the materials being introduced in this presentation. Although patients' cases mentioned herein are actual cases, treatment may differ from local approval product information.

Such information, views and opinions of the presenter do not necessarily reflect the information, views and opinions of Astellas Pharma Ltd. Astellas Pharma Ltd. does not recommend the use of any product in any different manner than as described in the local approval information, and complies with all applicable laws, regulations, and company policies.

The drained flame: Life, fatigue, and the hormonal fight against prostate cancer

Dr Po-Hung LIN, MD, PhD

Department of Urology Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan

Adverse events should be reported.

For Korea, healthcare professionals are asked to report any suspected adverse reactions to Astellas Pharma Korea. Inc

(Telephone: +82 10 5254 3389; Email: safety-kr@kr.astellas.com)

Prescribing Information is available at the end of this session. This promotional meeting is fully sponsored and supported by Astellas, including speaker-related honoraria and production of materials. It is intended for healthcare professionals only.

Disclosures

- Principal investigator of clinical trials: Johnson & Johnson, Merck & Co., Inc.
- International conference: AstraZeneca, Intuitive, Johnson & Johnson
- Advanced surgical training: Intuitive
- Local consultant: Bayer, Johnson & Johnson

National Cancer Institute: Fatigue

- An extreme sense of tiredness
- Lack of energy that can interfere with daily activities
- Feeling weak, worn out, heavy, slow, or run-down
- May also have trouble speaking or concentrating, short-term memory loss, and mood or emotional changes
- May not be completely relieved by sleep
- May last for a long time after treatment ends

National Cancer Institute: Cancer fatigue symptoms

- Having no energy; feeling extremely tired, drained, or lethargic
- Having difficulty moving; feeling heavy or slow
- Having difficulty thinking, remembering, or paying attention
- Having a sense of physical, emotional, and/or mental exhaustion
- Not feeling rested, even after sleeping

National Cancer Institute: Causes of cancer fatigue

- Fatigue from cancer: cancer-related symptoms
- Fatigue directly from cancer treatments
- Fatigue from other side effects of cancer treatment
 - Anemia

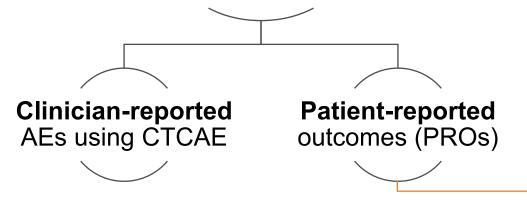
- Infection
- Appetite loss
- Pain
- Diarrhea
- Sleep problems
- Hot flashes
- Vomiting
- Fatigue from the emotional impact of cancer

Fatigue in prostate cancer

- Cancer-related fatigue affects up to 90% of patients with advanced prostate cancer
- Distressing, persistent, subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is unrelated to recent activity, and which interferes with usual functioning
- ADT often causes fatigue that is persistent and often intertwined with depression and insomnia
- Adversely impacts the patient's ability to work and carry out daily activities, thereby negatively
 affecting their personal relationships and overall quality of life
- When patients undergo more than one type of treatment concurrently, such as ADT and radiotherapy, this effect is magnified

Association between fatigue and treatment selection [1/2]

- The lowest rates of cancer-related fatigue (14–22%) are seen in men who have undergone a radical prostatectomy^{1,2}
- The prevalence of cancer-related fatigue after radiotherapy is estimated to be in the region of 33–56%^{1,2}


Association between fatigue and treatment selection [2/2]

Overview of fatigue rates: Recent and large prostate cancer clinical trials

Trial and treatment	Incidence of fatigue (%)	
	Any grade	Grade ≥3
STAMPEDE (high risk, non-metastatic) ¹ ADT alone ADT + ABI	56 66	1.6 2
STAMPEDE (metastatic) ¹ ADT alone ADT + ABI	58 68	2 2
ARCHES (metastatic) ¹ ADT alone ADT + ENZ	19.5 24.1	1.6 1.7
ARASENS (mHSPC) ¹ ADT + docetaxel ADT + docetaxel + DAR	32.9 33.1	NA NA
TITAN (mHSPC) ² ADT + placebo ADT + APA	16.9 20.4	NA NA

Types of fatigue assessments

Fatigue assessments¹

AE frequency and grade

 Typically, no AE duration, time of occurrence, or recurrence reported

Fatigue questionnaires

BFI

Fatigue-specific items on other questionnaires

FACT-P GP1 item

Functional assessments

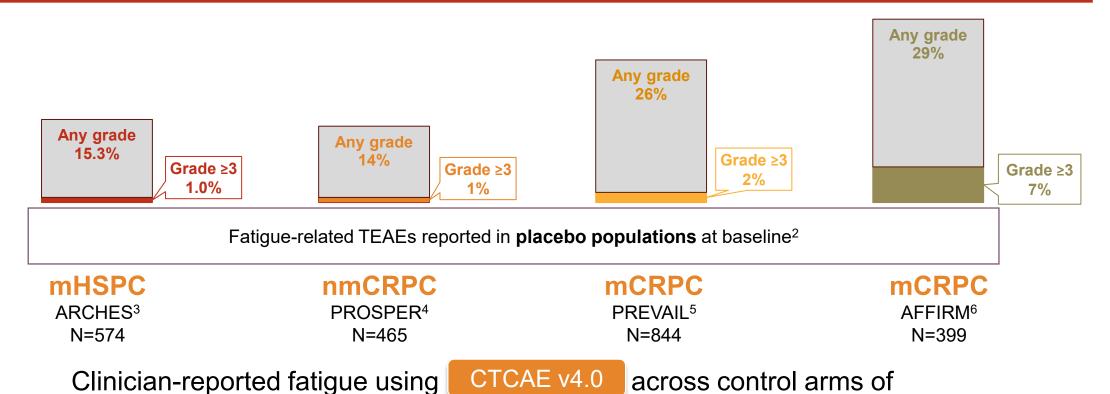
 Physical, social, emotional, and functional well-being

PRO data can assess treatment and disease-related symptoms

Brief Fatigue Inventory (BFI)

Validated fatigue measure with high internal consistency and reliability^{2,3}

Functional Assessment of Cancer Therapy-Prostate Cancer (FACT-P)

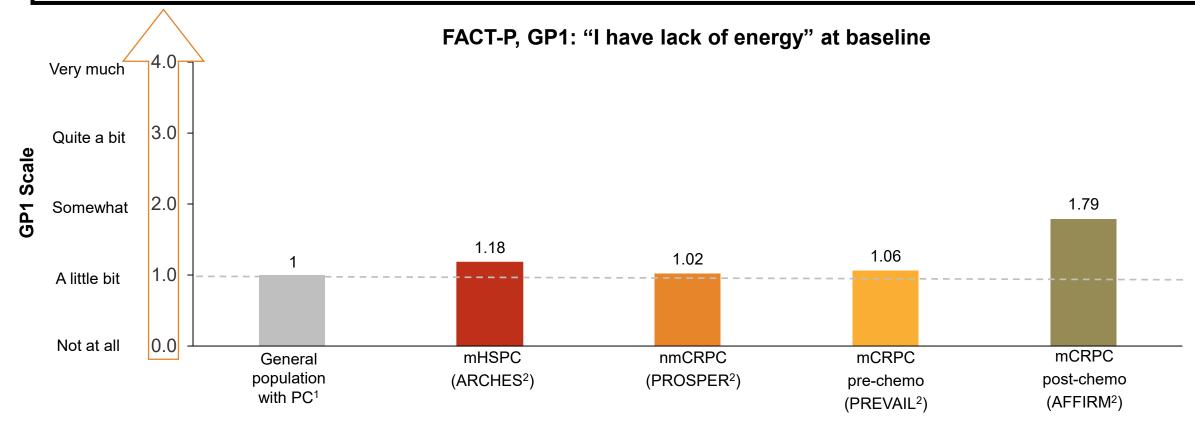

Captures several aspects of the patient experience relating to fatigue

 GP1 item, "I have a lack of energy", was demonstrated to be a proxy for fatigue via correlation analyses³

Clinician-reported fatigue in prostate cancer

Clinician-reported fatigue is greater in patients in later stages of disease, especially after chemotherapy¹

CTCAE, Common Terminology Criteria for Adverse Events; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; nmCRPC, non-metastatic castration-resistant prostate cancer; TEAE, treatment-emergent adverse event.


Phase III enzalutamide clinical trials³

^{1.} National Cancer Institute. Fatigue (PDQ®)—Health Professional Version. Available at: <a href="https://www.cancer.gov/about-cancer/treatment/side-effects/fatigue/fa

^{3.} Armstrong AJ, et al. J Clin Oncol 2019;37:2974-2986; 4. Hussain M, et al. N Engl J Med 2018;378:2465-2474; 5. Beer TM, et al. N Engl J Med 2014;371:424-433; 6. Scher HI, et al. N Engl J Med 2012;13:1187-1197.

Patient-reported fatigue in prostate cancer

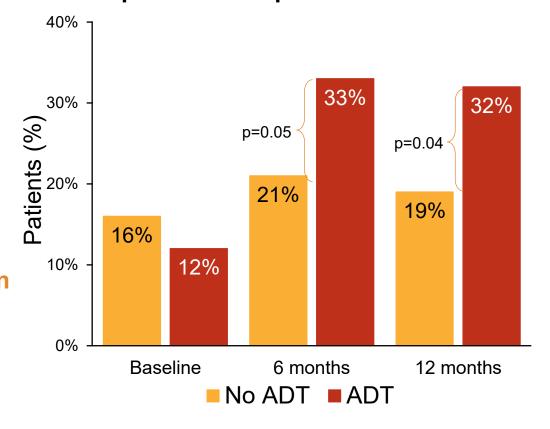
In clinical trials, patients report a "lack of energy" at baseline, which is at least comparable to a national representative sample of a general male population in the US, matched by age.*1,2 Fatigue is greater in patients in later stages of disease, especially after chemotherapy

^{*}Based on measurement using FACT-P GP1 item at baseline among enzalutamide arm subjects across Phase III studies.

FACT-P, Functional Assessment of Cancer Therapy-Prostate Cancer; mHSPC, metastatic hormone-sensitive prostate cancer; mCRPC, metastatic castration-resistant prostate cancer; nmCRPC, non-metastatic castration-resistant prostate cancer; PC, prostate cancer.

^{1.} Cella D, et al. Adv Ther 2022;39:3696-3710; 2. Tombal BF, et al. Prostate Cancer Prostatic Dis 2022;25:288-295.

Treatment-related fatigue in prostate cancer


In a **controlled**, **longitudinal comparison** of:

- Prostate cancer patients receiving ADT (N=60), and
- Prostate cancer patients receiving prostatectomy only (N=85)

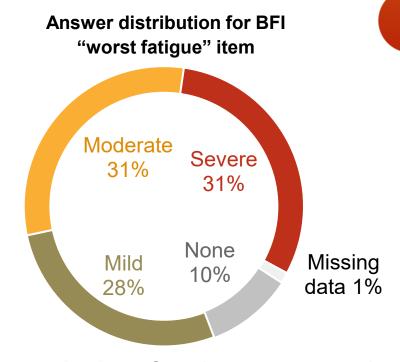
Fatigue Symptom Inventory was administered at baseline (treatment initiation), 6 months, and 12 months

- Among ADT-treated patients, rate of fatigue worsened over time
- ADT treatment was demonstrated to have a significant impact on fatigue severity, disruptiveness, and duration

Clinically meaningful fatigue in patients with prostate cancer*

^{*}Meaningful fatigue defined as scores >4 for the average of fatigue severity items. ADT, androgen deprivation therapy.

Nelson AM. et al. Support Care Canc 2016;24:4159–4166.

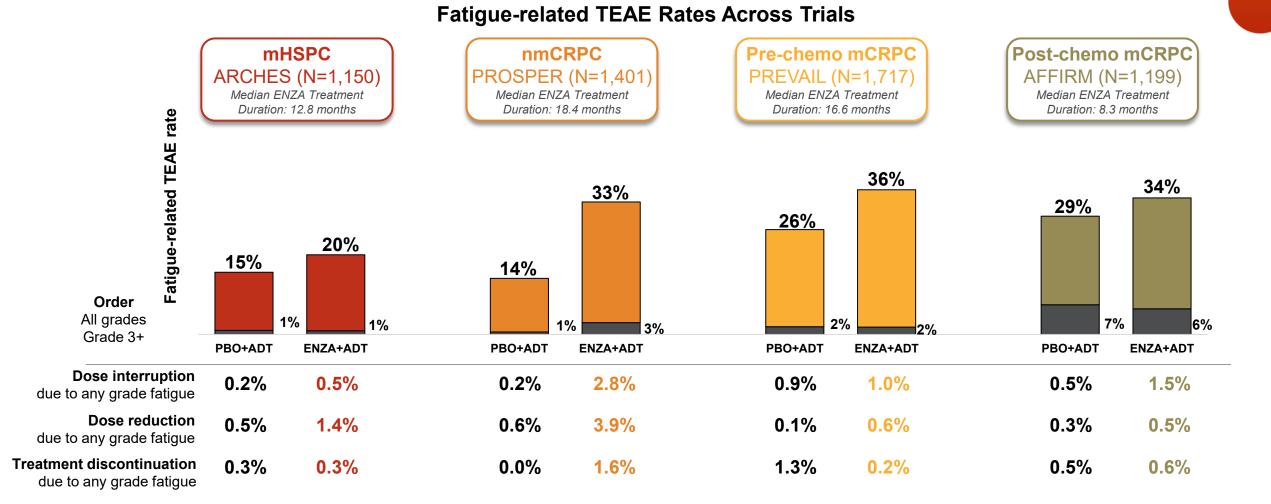

Treatment-associated fatigue in prostate cancer

Fatigue is common in men with prostate cancer receiving ADT

In a **cross-sectional survey** of 160 patients with biochemically controlled prostate cancer* receiving ADT therapy, the **BFI** was used to determine the prevalence of clinically-relevant fatigue

After a median duration of 26 months on ADT:

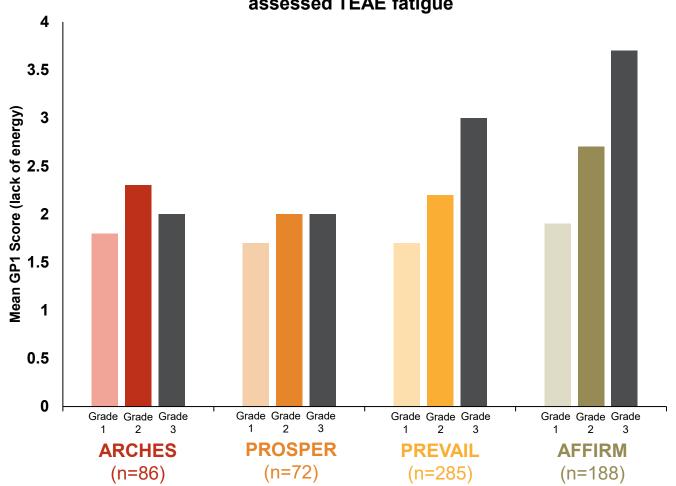
43% reported clinically-relevant fatigue (BFI >3)



The majority of patients surveyed reported fatigue to be moderate or severe at its worst after a median duration of 26 months

^{*}Biochemically controlled was defined as having received GnRH analogs for >6 months; PSA <0.2 μg/L within the last 3 months or if >0.2 μg/L then stable at nadir for two consecutive readings >3 months apart. ADT, androgen deprivation therapy; BFI, Brief Fatigue Inventory; GnRH, gonadotropin-releasing hormone; PSA, prostate-specific antigen. Storey DJ, *Annals of Oncol* 2012;23:1542–1549.

Enzalutamide and clinician-reported fatigue across trials



ADT, androgen deprivation therapy; chemo, chemotherapy; ENZ, enzalutamide; mCRPC, metastatic castration-resistance prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; nmCRPC, nonmetastatic castration-resistance prostate cancer; pBO, placebo; TEAE, treatment emergent adverse event.

Tombal BF, et al. *Prostate Cancer Prostatic Dis* 2022:25:288-295 (supplementary appendix).

Clinician- and patient-reported fatigue

Patient-reported fatigue severity
generally corresponds to
clinician-reported fatigue, which
further supports GP1 as a proxy
measure of fatigue

Patient-reported "lack of energy" item
(GP1) scores were consistently
higher for clinician-reported
Grade 2 and 3 fatigue

Tombal BF. et al. Prostate Cancer Prostatic Dis 2022:25:288-295.

^{*}Where 0 refers to 'not at all', 1 refers to 'a little bit', 2 refers to 'somewhat', 3 refers to 'quite a bit', 4 refers to 'very much'. TEAE, treatment emergent adverse event.

Treatments for fatigue in prostate cancer patients

- Psychosocial methods, such as education and cognitive behavioral therapy, can be beneficial in reducing cancer-related fatigue¹
- Guided imagery and progressive muscle relaxation²
- Exercise:³
 - Moderate exercise, such as resistance training
 - Resistance training or high-intensity interval training
 - Low-volume resistance-based exercise of medium to high intensity reduced fatigue significantly

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Nonpharmacologic interventions for cancer-related fatigue for patients on active treatments

- Physical activity (NCCN Category 1)
 - Maintain optimal level of activity for daily living
 - Cautions in determining level of activity:
 - Bone metastases
 - Thrombocytopenia
 - Anemia
 - Fever, active infection, or post-surgery
 - Limitations secondary to metastases or other comorbid conditions
 - Safety issues (i.e., assessment of risk of falls)
 - Consider initiation and/or encourage maintenance of a physical activity/exercise program, as appropriate per healthcare provider, consisting of cardiovascular endurance (walking, jogging, or swimming) and resistance (weights) training
 - Consider referral to specialty providers such as exercise oncology, physical therapy, occupational therapy, and physical medicine and rehabilitation
 - Yoga (Category 1)
- Massage therapy (Category 1)
- Acupuncture

- Psychosocial interventions
 - Cognitive behavioral therapy (CBT)/behavioral therapy (BT) (Category 1)
 - CBT for insomnia (CBT-I)
 - Psycho-educational therapies/educational therapies (Category 1)
 - Supportive expressive therapies
- Nutrition consultation
- Bright white light therapy

All recommendations are Category 2A unless otherwise indicated

Category Definitions

Category 1: Based upon high-level evidence (≥1 randomized Phase III trials or high-quality, robust meta-analyses), there is uniform NCCN consensus (≥85% support of the Panel) that the intervention is appropriate. Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus (≥85% support of the Panel) that the intervention is appropriate.

For further information, refer to NCCN Guidelines® for Cancer-Related Fatigue

BT, behavioral therapy; CBT, cognitive behavioral therapy; I, insomnia; NCCN, National Comprehensive Cancer Network.

1. Adapted with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Cancer-Related Fatigue V.2.2025. © 2025 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and illustrations herein may not be reproduced in any form for any purpose without the express written permission of NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available.

Case 1

Age: 71 years

Occupation: Retired worker (plumber)

Patient characteristics/ medical history:

Diabetes/hypertension

Caregiver: Son

ECOG: 0

Family support: Good

Diagnosis: 2024/12

iPSA 277 Gleason 4+4 cT3N1M1b

Assessment

PSA 0.77 ng/mL (2025/02/18) → 0.37 ng/mL (2025/04/11)

Diphereline QM Enzalutamide for mHSPC

Imaging results

Fatigue status

22

Before treatment: No pain, daily function well and no fatigue

After 1 month treatment: Grade 1 fatigue

• Treatment for fatigue: Exercise (light walking), regular naps, and sleep

Fatigue improved 2 months after treatment

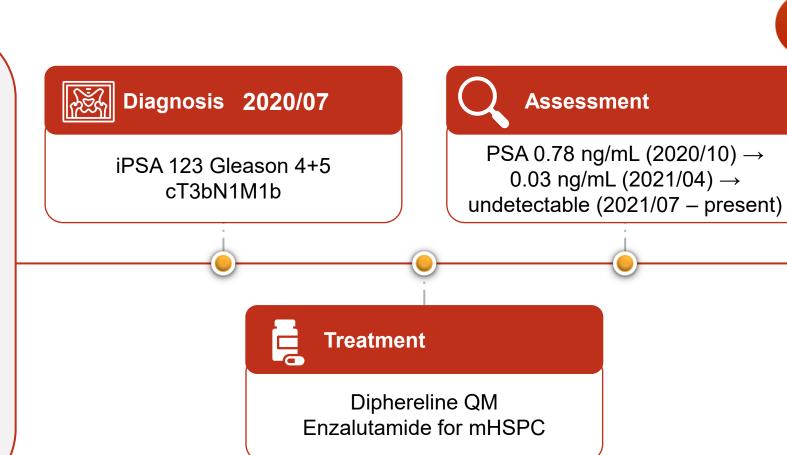
Speaker's own case

Case 2

Age: 64 years

Occupation: Owner of plumbing and

heating shop


Patient characteristics/ medical history:

No systemic disease

Caregiver: Wife

ECOG: 0

Family support: Good

Imaging results

Clinical course

- Initially mild symptoms: Discomfort over bilateral subcostal region
- 2020/12: Common cold, took NSAIDs → drug eruption and admission, complicated with anemia and thrombocytopenia, steroid therapy was given
- Reported Grade 2 fatigue → enzalutamide was discontinued for 2 weeks
- Restarted enzalutamide after 2 weeks
- Intermittent Grade 1 fatigue with interval of months, improved after light exercise without dose reduction or interruption

Question for the audience

• Is this episode of fatigue related to enzalutamide?

- A Yes
- B No
- C Unsur

Question for the audience

Should enzalutamide be discontinued?

- A Yes
- B No
- C Unsur

Clinical course

 2023/05: Near fainting episode without seizure → brain CT revealed no brain metastasis or organic lesions → kept taking enzalutamide

• 2023/07: Progressive fatigue with depression mood and physical impairment

Question for the audience

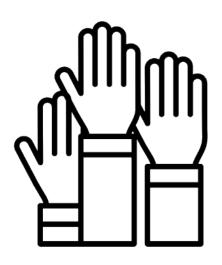
Are these symptoms related to AEs of enzalutamide?

- A Yes
- B No
- C Unsure

AE, adverse event.

Question for the audience

Should enzalutamide be discontinued?


- A Yes
- B No
- C Unsur

Clinical course

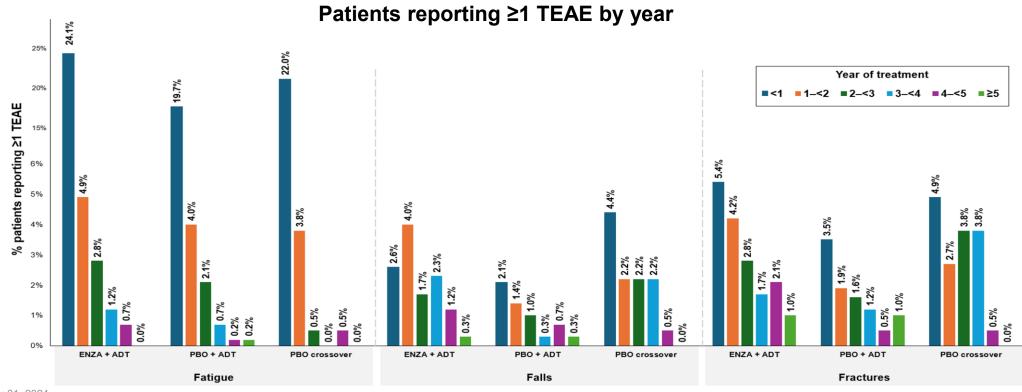
- 2023/08: Early stage of Parkinsonism was diagnosed by neurologist
- **2024/01:** Seizure episode
- 2024/08: Severe fatigue (Grade 3)
- 2024/08: Dose reduction to enzalutamide 2/QD
- 2024/12: ECOG 1–2, discontinued enzalutamide
- PSA remained undetectable until 2025/03

Question for the audience

In your daily practice, do you usually use questionnaires, such as FACT-P/BFI, to assess your patients' daily function, quality of life, and fatigue status?

Question for the audience

Regarding the possible enzalutamide-related fatigue, would you...


Inform the patient about the possible AE in advance before treatment initiation

B Only assess fatigue status after treatment initiation

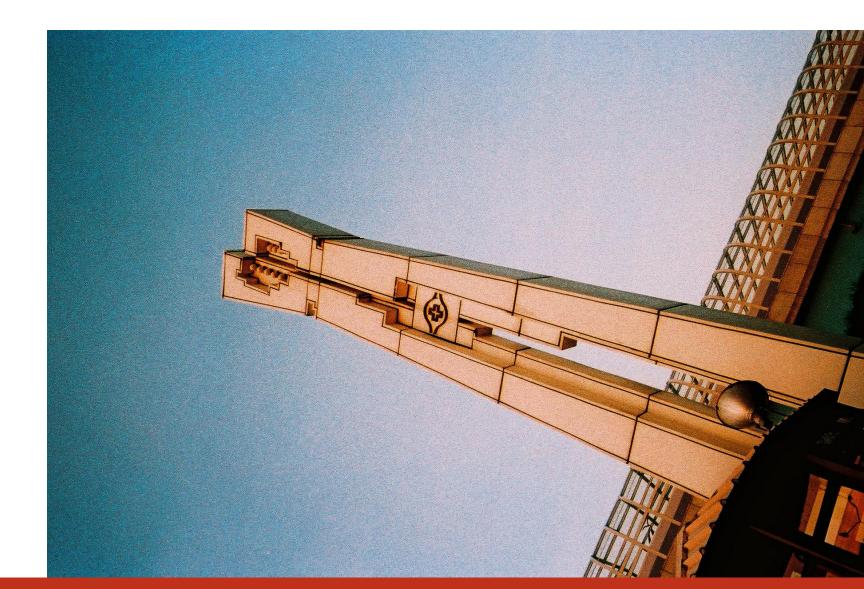
AE, adverse event.

ARCHES: First onset of fatigue was slightly more common in enzalutamide + ADT and placebo crossover groups vs. the placebo + ADT group during the first year and decreased thereafter

- Lower incidences of fatigue, falls, and fractures were generally observed in the placebo + ADT group vs.
 the enzalutamide + ADT and placebo crossover groups
- AEs were mostly reported in the first couple of years

Question for the audience

- A Treatments for fatigue (exercise/nutrition/massage/etc.)
- **B** Dose reduction
- C Hold enzalutamide treatment


Take-home message

- The prevalence of fatigue is high in patients with prostate cancer¹
- Fatigue may be related to cancer, treatments of cancer, and AEs of cancer treatments¹
- Be aware of fatigue; early intervention can improve patient's quality of life and increase compliance¹
 - An improvement in long-term survival was accompanied by an increase in enzalutamide-associated TEAEs, which tended to diminish substantially over time²
- Always look for underlying causes of fatigue¹

Thank you for your attention!

Putting patients at the center: Focusing on bone health

Prof Chang Gon Kim, MD, PhD

Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea

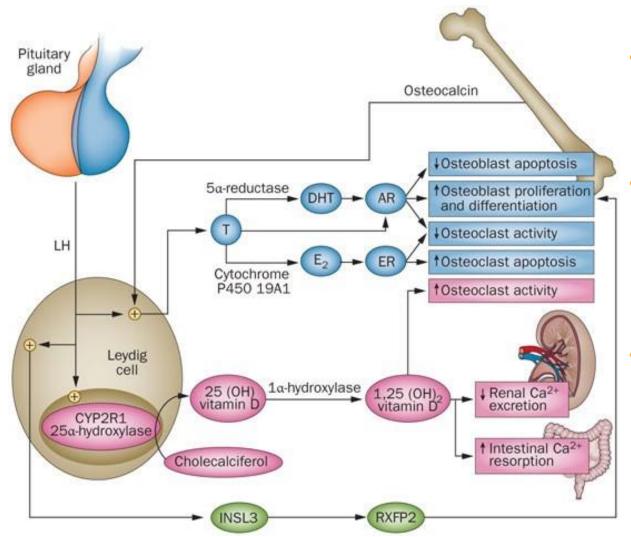
Adverse events should be reported.

For Korea, healthcare professionals are asked to report any suspected adverse reactions to Astellas Pharma Korea. Inc

(Telephone: +82 10 5254 3389; Email: safety-kr@kr.astellas.com)

Prescribing Information is available at the end of this presentation. This promotional meeting is fully sponsored and supported by Astellas, including speaker-related honoraria and production of materials. It is intended for healthcare professionals only.

Speaker disclosures

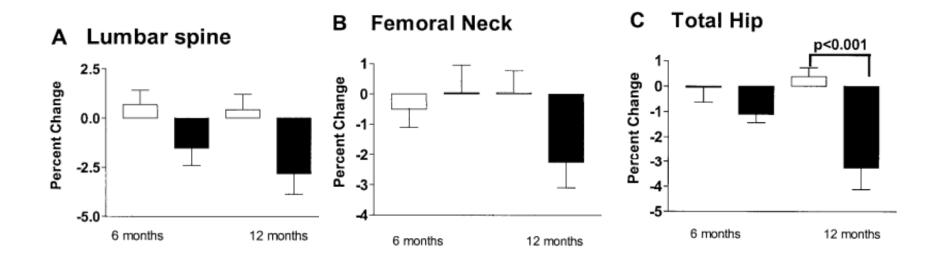

Consulting or advisory role: Amgen, Astellas, Johnson & Johnson/Janssen, Novartis,
 Ono Pharmaceutical, Pfizer

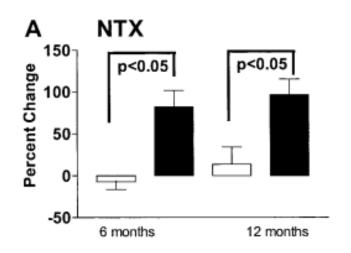
 Speakers' bureau: Amgen, Astellas, AstraZeneca, Boehringer Ingelheim, Dong-A ST, Hanmi, Novartis, Merck, MSD Oncology, Takeda

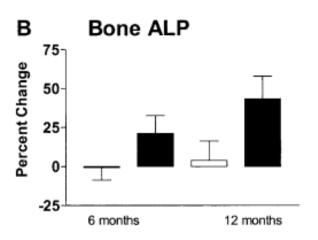
Research funding: Handok, Ipsen

Crosstalk between testis and bone

- Testosterone and bone health
 - Testosterone, primarily produced in the testes, plays a crucial role in maintaining bone health and density in males
- Bone-derived factors and testicular function
 - Osteocalcin, produced by bone cells, has been shown to promote testosterone production in Leydig cells of the testes. This highlights a feed-forward loop in which bone health influences testicular function, which in turn, affects bone health
- Beyond testosterone
 - The interplay between testis and bone is not solely dependent on testosterone. Leydig cells also produce other substances like INSL3, which plays a role in osteoblast function. Additionally, Leydig cells contribute to the 25-hydroxylation of vitamin D, a process crucial for bone health

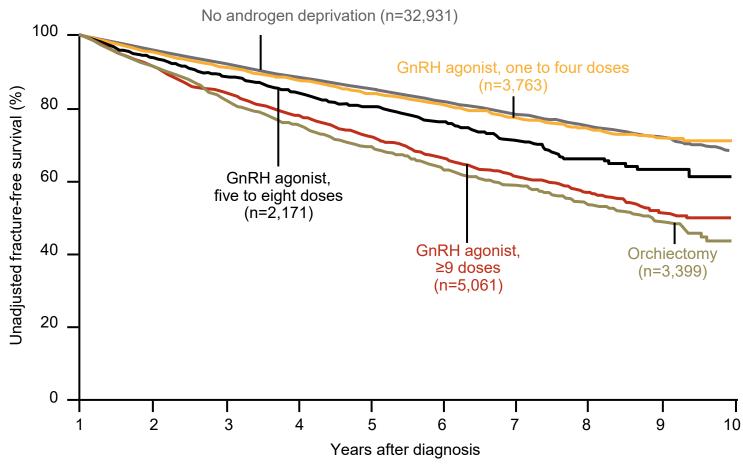

1,25 (OH)2 vitamin D, 1,25-dihydroxyvitamin D; 25 (OH) vitamin D, 25-hydroxyvitamin D; AR, androgen receptor; DHT, dihydrotestosterone; E2, 17β-Estradiol; ER, estrogen receptor; INSL3, insulin-like 3; LH, luteinizing hormone; RXFP2, relaxin family peptide receptor 2; T, testosterone.


Ferlin A. et al. Nat Rev Endocrinol 2013:9:548–554.


Effects of testosterone/estrogen on bone cells

Androgen synthesis from cholesterol¹ The effects of testosterone on bone cells² Aromatase CYP11A1 Cholesterol Pregnenolone Mesenchymal stem Hematopoietic stem Estrogens cell cell CYP17A1 3β -HSD2 Preosteoblast RANKL Osteoclast precursor 17α-Hydroxypregnenolone Progesterone Proliferation ➤ Differentiation Differentiation CYP17A1 CYP17A1 OPG Mature osteoblast Mature osteoclast Androgens Dehydroepiandrosterone 17α-Hydroxyprogesterone **Terminal** differentiation CYP17A1 17β -HSD3 Osteocytes Androstenediol Androstenedione Bone formation Bone resorption Mechanical $TGF\alpha$ 3β -HSD2 17β -HSD3 strength P450aro Testosterone Bone remodeling Estrone 5α/β-reductase P450aro → Indicates a sequential event Indicates promotion 17β -HSD3 Indicates inhibition ----> Indicates conversion 5α/β-DHT 17β-Estradiol

Rapid bone loss after ADT in patients with prostate cancer


Prevalence of osteoporosis in patients on ADT: Sensitivity analysis

Studies selected if:	Osteoporosis prevalence, % (95 %CI)	Osteopenia prevalence, % (95 %Cl)	Normal bone mass prevalence, % (95% CI)
Age			
≥70 years	0.270 (0.176–0.361)	0.485 (0.420–0.526)	0.245 (0.158–0.331)
<70 years	0.436 (0.233–0.612)	0.361 (0.261–0.434)	0.204 (0.074–0.351)
Publication year			
<2007	0.270 (0.156–0.391)	0.487 (0.387–0.573)	0.244 (0.172–0.316)
≥2007	0.329 (0.193–0.450)	0.416 (0.317–0.482)	0.255 (0.141–0.362)
Ethnicity			
Asian population	0.158 (0.043–0.309)	0.444 (0.338–0.530)	0.398 (0.241–0.546)
Non-Asian population	0.347 (0.233–0.449)	0.432 (0.345–0.495)	0.221 (0.137–0.302)
Median ADT duration			
<24 months/intermittent	0.198 (0.067–0.346)	0.506 (0.367–0.594)	0.297 (0.114–0.485)
24–30 months	0.202 (0.067–0.363)	0.416 (0.307–0.500)	0.381 (0.236–0.510)
>30 months	0.427 (0.279–0.568)	0.395 (0.301–0.480)	0.179 (0.110–0.253)
ROI			
Hip/lumber spine	0.314 (0.187–0.426)	0.400 (0.320–0.445)	0.287 (0.179–0.381)
Third distal radius (alone or with hip/lumber spine)	0.343 (0.270–0.420)	0.496 (0.420–0.588)	0.161 (0.108–0.222)
ADT			
Primary gonadal ablation therapy	0.355 (0.287–0.426)	0.482 (0.397–0.567)	0.164 (0.119–0.214)
Combination androgen blockage	0.302 (0.170–0.422)	0.402 (0.317–0.452)	0.295 (0.179–0.396)

ADT, androgen deprivation therapy; CI confidence interval; ROI, region of interest. Lassemillante AC, et al. *Endocrine* 2014;45:370–381.

ADT and fracture risk in patients with prostate cancer

Unadjusted fracture-free survival among patients with prostate cancer, according to ADT

Relative risk of fracture increased steadily with the increasing number of doses of GnRH agonist (p<0.001 for linear trend)

Risk of fracture after ADT for prostate cancer

Toxic effect	12 months before diagnosis, %	P value	12–16 months after diagnosis, %	P value	Toxic effect	12 months before diagnosis, %	P value	12–16 months after diagnosis, %	P value
Osteoporosis		0.19		<0.001	Spine		0.44		<0.001
Osteoporosis		0.15		40.00 I	ADT	0.36		3.20	
ADT	0.59		6.92		No ADT	0.30		1.64	
					Upper arm		0.62		<0.001
No ADT	0.46		3.69		ADT	0.30		2.21	
Any fracture		0.01		<0.001	No ADT	0.26		1.19	
-		0.01		40.001	Femoral neck (hip)		0.02		<0.001
ADT	3.41		19.37		ADT	0.44		4.06	
No ADT	2.80		12.63		No ADT	0.26		2.06	
Fracture					Other parts of the femur		0.47		<0.001
resulting in		0.49		<0.001	ADT	0.06		1.17	
hospitalization					No ADT	0.09		0.64	
ADT	0.26		5.19		Lower leg		0.36		<0.001
					ADT	0.36		2.24	
No ADT	0.21		2.37		No ADT	0.29		1.56	

Bone health issues in patients with prostate cancer

	Fragility fractures/ osteoporosis	Skeletal-related events
Population at risk ¹	All men	Men with bone metastases
Anatomic site ¹	Normal bone	Bone metastases
Effects of cancer treatment:		
ADT ^{1,2}	↑	\downarrow
Abiraterone acetate ^{1,2}	↑	\
Enzalutamide, darolutamide, apalutamide ³	↑	\
Osteoclast activation ³	+	+++

Denosumab Phase III study in mCRPC

Key inclusion criteria

Castration-resistant prostate cancer and at least one bone metastasis, and documented failure of at least one hormonal therapy

Key exclusion criteria

Current or prior IV bisphosphonate treatment

ANDOMIZAT

Denosumab 120 mg SC and placebo IV every 4 weeks (n=950)

Zoledronic acid 4 mg IV* and placebo SC every 4 weeks (n=951)

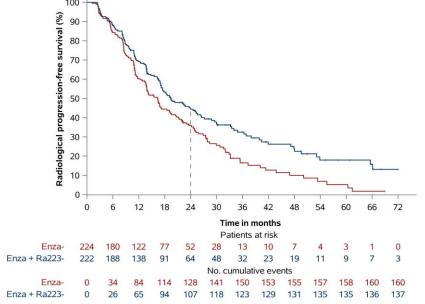
Recommended: Daily supplementation with calcium (≥500 mg) and vitamin D (≥400 U)

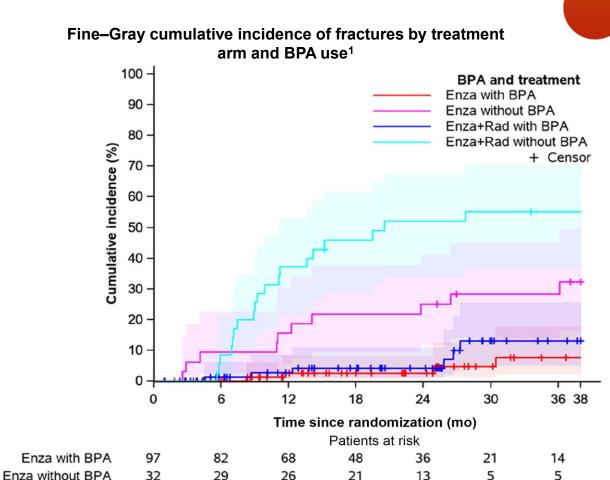
Primary endpoint: Time to first on-study SRE (non-inferiority)

Secondary: Time to first on-study SRE (superiority), time to first and subsequent on-study SRE (superiority)

Primary endpoint: Time to first on-study SRE

48


One of the approved indications of denosumab in Korea is prevention of SRE in patients with multiple myeloma and in patients with bone metastases from solid tumors. CI, confidence interval; HR, hazard ratio; SRE, skeletal-related event.


Fizazi K, et al. *Lancet* 2011;377:813–822.

Lessons from ERA-223 and PEACE-3: Cumulative incidence of fractures by treatment arm and use of BPAs

- The ERA-223 trial, which combined Ra-223 with abiraterone (another ARPI), showed a higher fracture rate than abiraterone alone¹
- This led to the mandatory use of BPAs in the PEACE-3 trial and other studies^{1,2}

Radiological progression-free survival was assessed by the local investigator in the ITT population²

74

Enza+Rad with BPA Enza+Rad without BPA 59

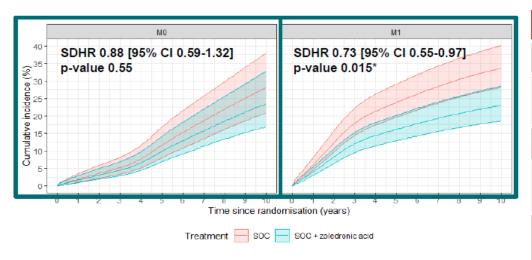
46

36

12

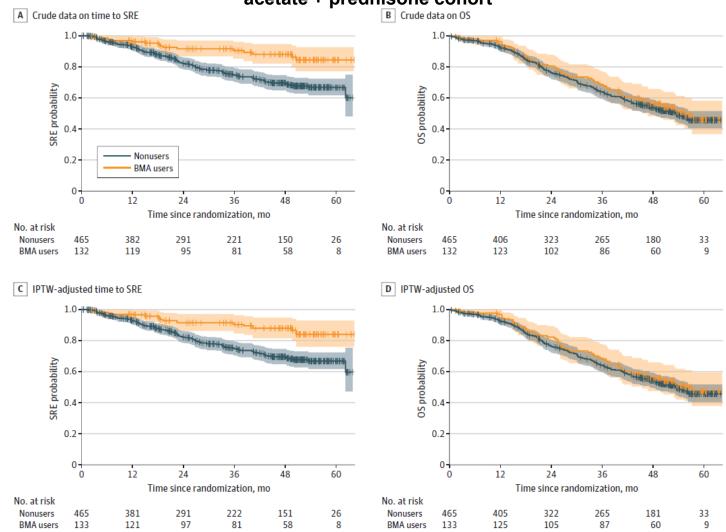
Current evidence for BPAs in mCRPC

- Reduced fracture rates¹
 - BPAs, including denosumab and zoledronic acid, significantly reduce the risk of fractures and other SREs in patients with mCRPC and bone metastases
- Efficacy in combination therapy²
 - Studies show that BPAs are particularly important when combined with treatments like radium-223 or androgen receptor pathway inhibitors (e.g. enzalutamide, abiraterone) to mitigate the risk of SREs
- Mandatory use³
 - The importance of BPAs in this context is well established, with some trials even mandating their use to ensure patient safety
- Improved quality of life⁴
 - By preventing or delaying SREs, BPAs help maintain patient independence, reduce pain, and improve overall quality of life

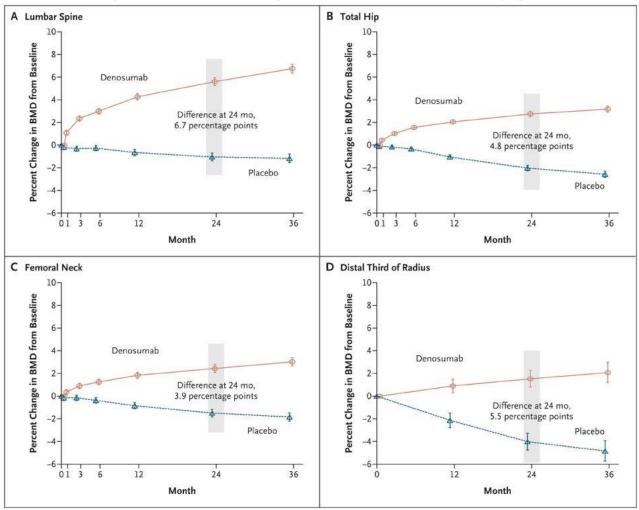

Current evidence for zoledronic acid in mHSPC

	CALGB 90202 ¹	STAMPEDE ²	ZAPCA ³
Patient cohort	M1b	M0/M1	M1b
N, randomization	645 (target: 680), 1:1	1,777, 2:1	227, 1:1
SRE, %	299 (target: 470), 46.4%	-	92, 40.5%
Control	ADT + placebo	ADT only	ADT + bicalutamide
Treatment	ADT + 4 mg zoledronic acid once monthly until first SRE	ADT + 4 mg zoledronic acid for six 3-weekly cycles, then 4-weekly until 2 years	ADT + bicalutamide + 4 mg zoledronic acid once monthly for 2 years
HR (SRE)	HR=0.89 (95% CI 0.74-1.07), p=0.22	HR=0.94 (95% CI 0.79-1.11), p=0.450	HR=0.58 (95% CI 0.38-0.88), p=0.009

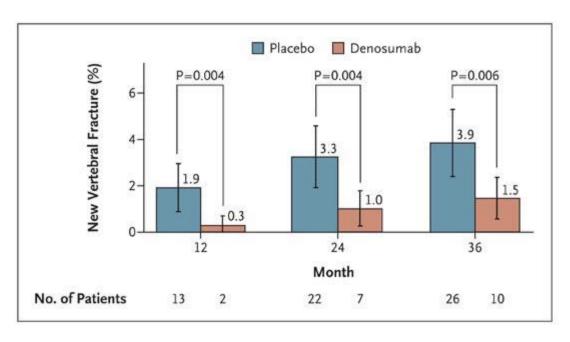
Updated results of the STAMPEDE study (ESMO 2023)


	Model-based cumulative incidence (95% CI)				
	Non me	etastatic	Metastatic		
Treatment	5 years (%)	10 years (%)	5 years (%)	10 years (%)	
ADT only	11 (8–15)	26 (20–33)	23 (19–28)	32 (27–37)	
ADT + zoledronic acid	10 (7–13)	23 (18–30)	17 (14–21)	24 (20–28)	
ADT + docetaxel	10 (7–13)	24 (19–30)	23 (19–27)	34 (29–39)	
ADT + docetaxel + zoledronic acid	9 (6–13)	21 (15–30)	17 (13–23)	26 (20–33)	

Average treatment effect (difference in 5-year incidence [95% CI])					
Control	Treatment	Non metastatic	Metastatic		
ADT	ADT + zoledronic acid	-1.2 (-5.1; 2.7)	-5.6 (-10.9; -0.4)		
ADT	ADT + docetaxel	-1.2 (-5.0; 2.5)	-0.1 (-5.3; 5.0)		
ADT	ADT + docetaxel + zoledronic acid	-2.3 (-8.1; 3.4)	-5.6 (-13.4; 2.2)		
ADT + docetaxel	ADT + docetaxel + zoledronic acid	-1.1 (-4.5; 2.3)	-5.4 (-10.3; -0.5)		

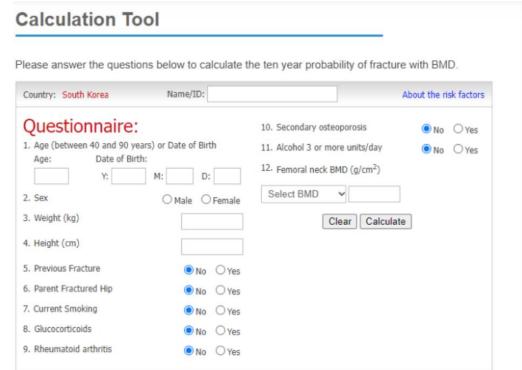

Post hoc analysis of the LATITUDE study in mHSPC

Crude and IPTW-adjusted Kaplan-Meier curves based on BMA use in the abiraterone acetate + prednisone cohort



Denosumab in M0 HSPC

Mean percent changes from baseline BMD values during the study period, according to skeletal site and study group


Denosumab at a dose of 60 mg subcutaneously every 6 months or placebo

One of the approved indications of denosumab in Korea is prevention of SRE in patients with multiple myeloma and in patients with bone metastases from solid tumors. BMD, bone mineral density; HSPC, hormone-sensitive prostate cancer; M, metastasis. Smith MR, et al. N Engl J Med 2009;361:745–755.

Current evidence for BPAs in mHSPC

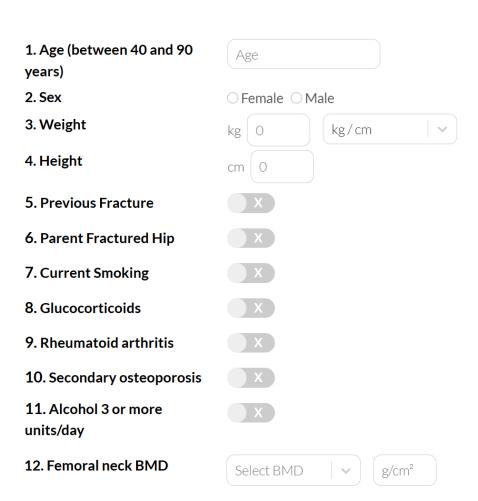
- Target population¹
 - May be beneficial in some patients
 - Risk stratification tool may be considered
- Appropriate drugs*2
 - RANKL inhibitors may be superior to bisphosphonate
- Risk¹
 - Hypocalcemia can be prevented with vitamin D and calcium supplementation
 - ONJ should be prevented by regular dental checkups

FRAX³

Case 1: mHSPC with bone metastasis

- Male, aged 77 years
- Height and weight: 170 cm and 70 kg
- Never smoker
- Alcohol consumption (+)
- Sudden back pain with walking/voiding difficulty
- Lumbar fusion surgery for spinal cord compression
- Diagnosed as mHSPC
- Start ADT + enzalutamide

Question for the audience


What are the appropriate next steps for this patient?

- A Palliative radiotherapy for bone metastasis
- **B** Check bone mineral density
- **C** Check FRAX probability
- Regular dental examination

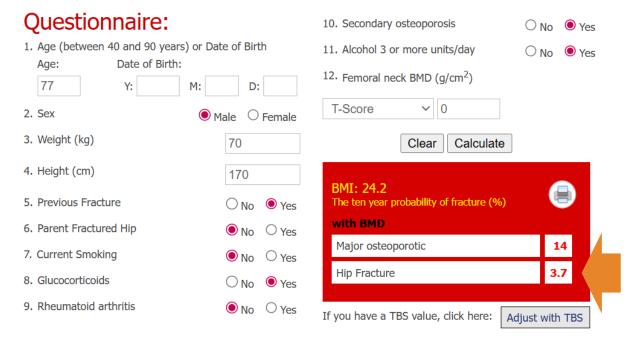
FRAX, Fracture Risk Assessment Tool.

Case 1: mHSPC with bone metastasis

- Several factors of increasing fracture risk
 - Steroid use: modifiable
 - Smoking: modifiable
 - Alcohol consumption: modifiable
 - Low BMI: modifiable
 - Age, sex, family history, previous fracture, osteoporosis, BMD, RA: unmodifiable



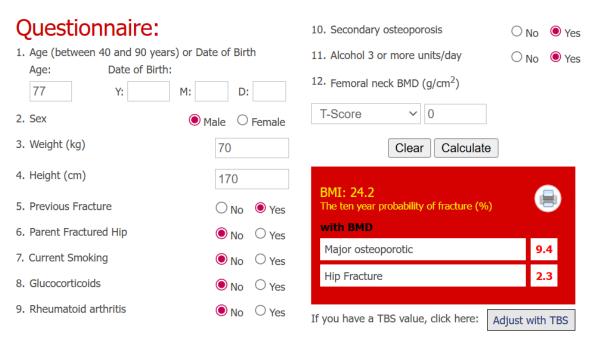
Case 1: mHSPC with bone metastasis


- Use of BPA based on FRAX score¹
- National Osteoporosis Foundation recommended thresholds for bone resorptive agents²
 - ≥20% 10-year risk of major osteoporotic fracture
 - ≥3% 10-year risk of hip fracture

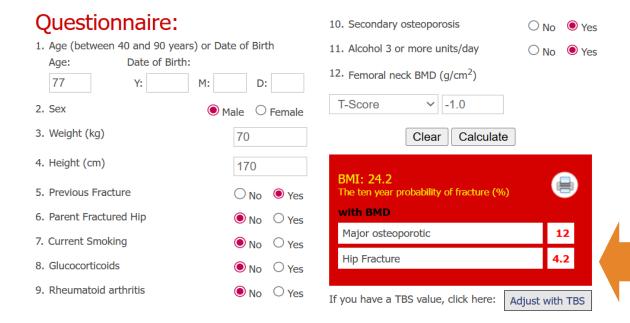
What if the patient received abiraterone + prednisolone instead of enzalutamide?

Use of enzalutamide¹

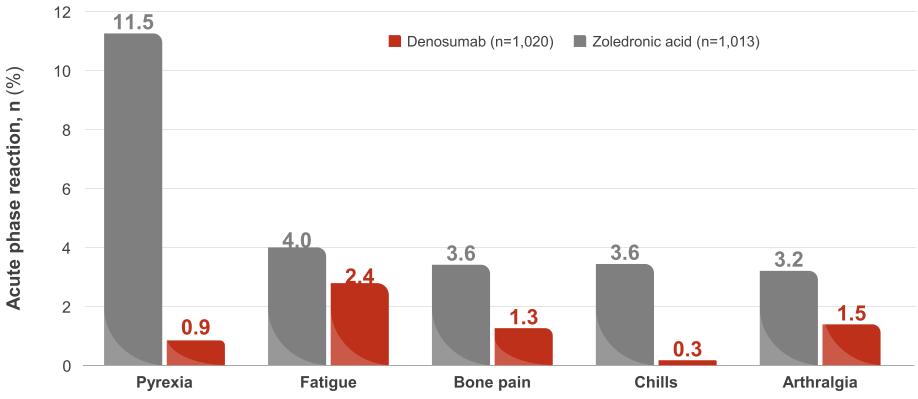
Use of abiraterone + prednisolone¹



- National Osteoporosis Foundation recommended thresholds for bone resorptive agents²
 - ≥20% 10-year risk of major osteoporotic fracture
 - ≥3% 10-year risk of hip fracture


What if this was a patient with osteopenia?

BMD T-Score= 0¹

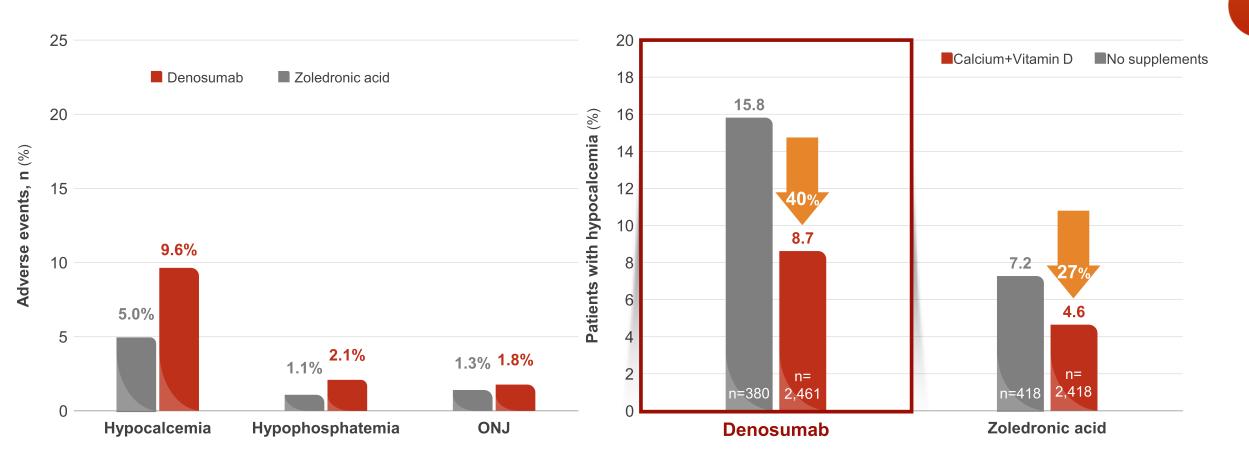

BMD T-score = -1.0¹

- National Osteoporosis Foundation recommended thresholds for bone resorptive agents²
 - ≥20% 10-year risk of major osteoporotic fracture
 - ≥3% 10-year risk of hip fracture

What is your choice between bisphosphonate vs. RANKL inhibitors?

 IV bisphosphonates are currently used to treat bone metastases and prevent SREs in patients with advanced breast cancer. In a phase 3 study, denosumab, a fully human monoclonal antibody against RANKL, was shown to be superior to zoledronic acid in delaying or preventing SREs in patients with breast cancer and bone metastases

Question for the audience



What is your choice between bisphosphonate vs. RANKL inhibitors?

- **A** Bisphosphonate
- **B** RANKL inhibitor

Are there any tips for managing adverse events regarding denosumab?

My personal tips for bone health management in patients with mHSPC

- Routine assessment of BMD (baseline, then annually or bi-annually)
- Refer patients with osteopenia (T-score −1.0 to −2.5) and osteoporosis (T-score <−2.5) to endocrinologist for specialized care
- Choice between different ARPIs
 - Direct androgen receptor antagonist preferred rather than CYP17A1 inhibitor
- Use of supplements (calcium and vitamin D) with BPA
- Patient education
 - Smoking cessation
 - Alcohol cessation
 - Oral hygiene

Case 2: mHSPC under BTA with ONJ

- Male, aged 77 years
- Height and weight: 170 cm and 70 kg
- Never smoker
- Alcohol consumption (+)
- Sudden back pain with walking/voiding difficulty
- Lumbar fusion surgery for spinal cord compression
- Diagnosed as mHSPC
- BMD T-score: −1.0
- FRAX 10-year probability of hip fracture: 4.2%
- Start ADT + enzalutamide + denosumab
- Left jaw pain with mild fever 18 months after systemic treatment

Question for the audience

- What is the appropriate management for ONJ?
- A Conservative treatments (antimicrobial rinses, systemic antibiotics, and pain management)
- Surgical treatment (debridement sequestrectomy, or other surgical interventions may be necessary by specialist)
- C Denosumab interruption
- Teriparatide (a bone remodeling stimulator), may be used to promote bone healing and potentially enhance the effectiveness of other treatments in certain patients

ONJ, osteonecrosis of the jaw.

Conclusion

- Bone health is closely associated with the incidence of skeletal-related adverse events, quality of life, and overall survival across all stages of prostate cancer
- BPAs may be considered for patients with mHSPC based on individual risk stratification
- The FRAX risk score can be a useful tool to guide decisions regarding the use of bone-protecting agents in patients with mHSPC
- Modifiable risk factors for fracture should be routinely assessed in clinical practice, with an emphasis on patient education
- The use of BPAs requires careful consideration, and referral to a specialist may be warranted in certain cases

Please refer to the Korean PI for XTANDI® (enzalutamide) via the following link or QR code:

< XTANDI soft capsule 40mg>

Astellas Pharma Korea., Inc. (7F Parnas tower, 521, Teheran-ro, Gangnam-qu, Seoul, Republic of Korea)