

# ADCs and the LA/mUC treatment landscape

# Dr Alejo Rodriguez-Vida, MD, PhD

Consultant Medical Oncologist, Genitourinary Cancer Unit & Early Drug Development Unit; Associate Professor, Pompeu Fabra University Barcelona, Hospital del Mar, Barcelona, Spain

EV as first-line therapy is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer. Combination therapy with pembrolizumab.

EV as monotherapy is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 or programmed death-ligand 1 inhibitor, and have received a platinum-containing chemotherapy

1L, first line; EV, enfortumab vedotin;
LA/mUC, locally advanced/metastatic urothelial carcinoma; P, pembrolizumab;
PD-1/L1, programmed cell death-1/ligand 1.
PADCEV® (enfortumab vedotin). Prescribing Information
July 2025 I MAT-KR-PAD-2025-00063

#### Adverse events should be reported.

For Korea, healthcare professionals are asked to report any suspected adverse reactions to Astellas Pharma Korea. Inc

(Telephone: +82 10 5254 3389; Email: safety-kr@kr.astellas.com)

Prescribing information is available at the end of this presentation. This promotional meeting is fully sponsored and supported by Astellas, including speaker-related honoraria and production of materials. It is intended for healthcare professionals only.







# **Disclaimers**

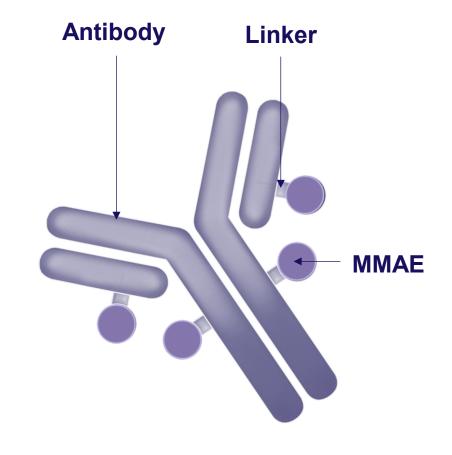


The information, views and opinions presented herein are those of the presenter, and the presenter is solely responsible for the materials being introduced in this presentation. Although patients' cases mentioned herein are actual cases, treatment may differ from local approval product information.

Such information, views and opinions of the presenter do not necessarily reflect the information, views and opinions of Astellas Pharma Ltd. Astellas Pharma Ltd. does not recommend the use of any product in any different manner than as described in the local approval information, and complies with all applicable laws, regulations, and company policies.

# Speaker disclosures

- I have provided scientific advice to: Astellas Pharma, AstraZeneca, Bayer, Bristol-Myers Squibb, Johnson & Johnson Global Services, Merck KGaA, Merck Sharp & Dohme, Pfizer & Roche
- I have participated in medical meetings organised by: Astellas Pharma, AstraZeneca, Bayer, Bristol-Myers Squibb, Johnson & Johnson Global Services, Merck KGaA, Merck Sharp & Dohme, Pfizer & Roche


# ADCs enable the targeted delivery of potent cytotoxic drugs into cancer cells



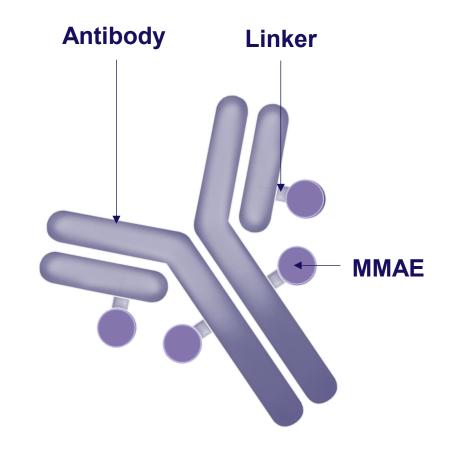
Key structural components of an ADC<sup>2</sup>



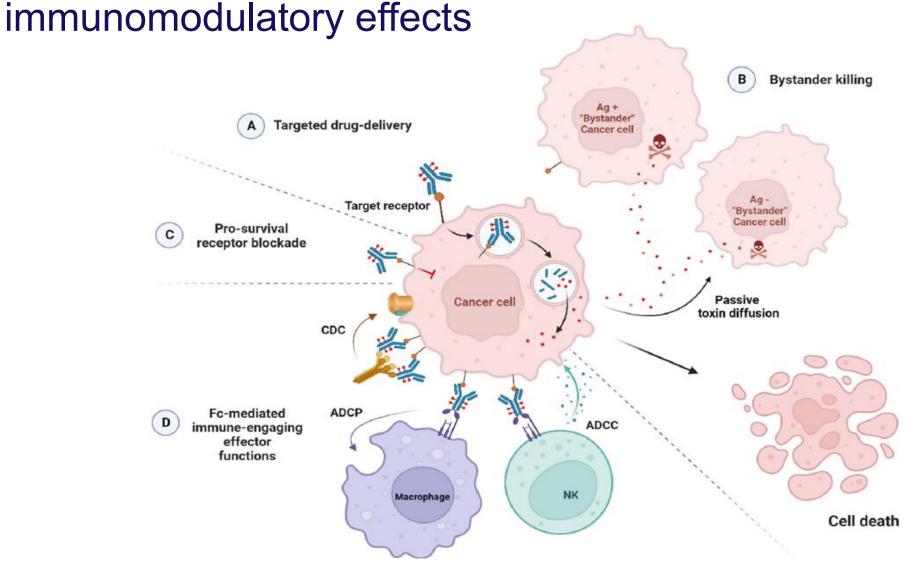
ADCs harness monoclonal antibodies that specifically target tumor-associated antigens, linked to a cytotoxic payload that can be delivered into cancer cells<sup>1–3</sup>



# ADCs may offer potential benefits vs. conventional chemotherapy




The specificity of monoclonal antibodies can be utilized to ensure targeted delivery of cytotoxic payloads to tumor cells, improving the efficacy of the payload<sup>1</sup>




By targeting antigens that are localized on the cell surface and highly expressed on tumor cells compared with healthy cells, ADCs may **limit the risk** of off-target toxicities vs. conventional chemotherapy, to which patients experience systemic exposure<sup>1,2</sup>

# Key structural components of an ADC<sup>2</sup>



The mechanism of action of ADCs involves targeted



Images reproduced from 'Antibody–Drug Conjugates: The Dynamic Evolution from Conventional to Next-Generation Constructs' Metrangolo V & Engelholm LH. *Cancers (Basel)* 2024;16:447.

Available at: https://www.mdpi.com/2072-6694/16/2/447. By CC: https://creativecommons.org/licenses/by-nc/4.0/

ADC, antibody–drug conjugate; ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; Ag, antigen; CDC, complement-dependent cytotoxicity; Fc, fragment crystallizable; NK, natural killer.

Metrangolo V & Engelholm LH. *Cancers (Basel)* 2024;16:447.

# There are many ADCs in clinical development for the treatment of solid tumors



| Breast                                                                                                                                                         | Lung                                                                                                                  | GI                                                                                | GU                                                                                                                      | Gynecologic                                                                                                                           | Brain     | Solid tumors                                                                                                                                                        | Lymphoma                                                                                                                                                    | Myeloma                                                            | Acute leukemia                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| <ul> <li>T-DM1</li> <li>T-DXd</li> <li>Dato-DXd</li> <li>LV</li> <li>T-DM1</li> <li>T-DXd</li> <li>SG</li> <li>SGN-15</li> <li>Dato-DXd</li> <li>LV</li> </ul> | <ul> <li>SGN-15</li> <li>Teliso-V</li> <li>Rova-T</li> <li>SG</li> <li>Dato-DXd</li> <li>T-DXd</li> <li>AR</li> </ul> | <ul> <li>T-DM1</li> <li>T-DXd</li> <li>T-DXd</li> <li>RC48</li> <li>AR</li> </ul> | <ul> <li>RC48</li> <li>SG</li> <li>EV</li> <li>HuMax-TF</li> <li>EV</li> <li>SG</li> <li>RC48</li> <li>T-DXd</li> </ul> | <ul> <li>MIRV</li> <li>AR</li> <li>HuMax-TF</li> <li>MIRV</li> <li>ABT-414</li> <li>T-DXd</li> <li>T-DM1</li> <li>HuMax-TF</li> </ul> | • ABT-414 | <ul> <li>BMS-986148</li> <li>SG</li> <li>Rova-T</li> <li>SG</li> <li>AR</li> <li>T-DXd</li> <li>Teliso-V</li> <li>HuMax-TF</li> <li>Dato-DXd</li> <li>LV</li> </ul> | <ul> <li>Brentuximab vedotin</li> <li>Polatuzumab vedotin</li> <li>Brentuximab vedotin</li> <li>Polatuzumab vedotin</li> <li>Pinatuzumab vedotin</li> </ul> | <ul> <li>Belantamab vedotin</li> <li>Belantamab vedotin</li> </ul> | <ul> <li>Brentuximab vedotin</li> <li>Gemtuzumab ozogamicin</li> <li>Gemtuzumab ozogamicin</li> </ul> |

Italics indicate trials in progress

# ADCs are a promising modality not only in UC, but also across multiple cancer types

Table adapted from Fuentes-Antrás J et al. 2023.1

ABT-414, depatuxizumab mafodotin; ADC, antibody–drug conjugate; AR, anetumab ravtansine; Dato-DXd, datopotamab deruxtecan; EV, enfortumab vedotin; GI, gastrointestinal; GU, genitourinary; HuMax-TF, tisotumab vedotin; LV, ladiratuzumab vedotin; MIRV, mirvetuximab soravtansine; RC48, disitamab vedotin; Rova-T, rovalpituzumab tesirine; SG, sacituzumab govitecan; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; Teliso-V, telisotuzumab vedotin; UC, urothelial carcinoma.

# There are many ADCs in clinical development for the treatment of urothelial carcinoma [1/2]

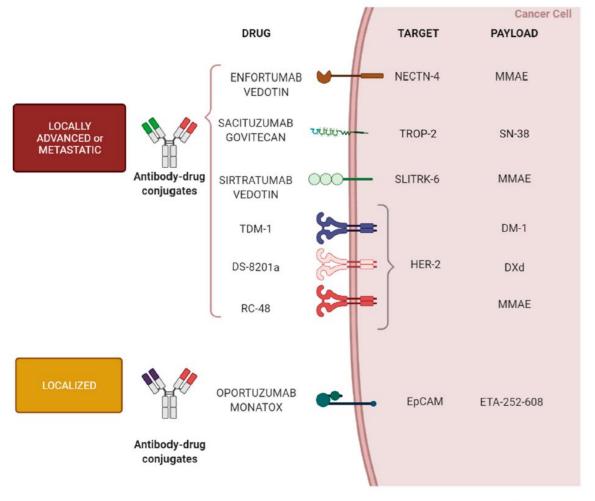



Figure 2. The main mechanisms of antibody drug conjugates investigated in urothelial carcinoma.

Images reproduced from 'Antibody-Drug Conjugates in Urothelial Carcinoma: A New Therapeutic Opportunity Moves from Bench to Bedside' Ungaro A et al. *Cells* 2022;11:803. Available at: https://www.mdpi.com/2073-4409/11/5/803. By CC: https://creativecommons.org/licenses/by-nc/4.0/.

ADC, antibody—drug conjugate; DM-1, emtansine; EpCAM, epithelial cell adhesion molecule; ETA, *Pseudomonas* aeruginosa exotoxin A; HER2, human epidermal growth factor receptor 2; MMAE, monomethyl auristatin E; RC48, disitamab vedotin; SLITRK6, SLIT and NTRK like family member 6; T-DM1, trastuzumab emtansine; TROP2, trophoblast cell surface antigen 2. Ungaro A et al. *Cells* 2022;11:803.

# There are many ADCs in clinical development for the treatment of urothelial carcinoma [2/2]

| Clinical trial | Phase  | Drug                                   | Target<br>antigen         | Payload                | Indication                                   | Enrollment | Primary endpoint          | Estimated completion date |
|----------------|--------|----------------------------------------|---------------------------|------------------------|----------------------------------------------|------------|---------------------------|---------------------------|
| NCT06483334    | 1/11   | ST + EV ± P                            | ST: TROP2<br>EV: Nectin-4 | SG: TOPO-1<br>EV: MMAE | Previously treated advanced UC               | 98         | DLT, AE profile, ORR      | Jul 2028                  |
| NCT05941507    | 1/11   | LCB84 ± anti-PD-L1 Ab                  | TROP2                     | MMAE                   | Advanced solid tumors including UC           | 300        | AE profile, RP2D, OS, ORR | May 2027                  |
| NCT05489211    | II     | Dato-DXd ± anticancer therapies        | TROP2                     | TOPI<br>inhibitor      | Advanced solid tumors including UC           | 582        | ORR, AE profile           | Aug 2026                  |
| NCT05756559    | II     | EV + P                                 | Nectin-4                  | MMAE                   | Advanced bladder cancer of variant histology | 25         | ORR                       | Dec 2027                  |
| NCT04879329    | II     | RC48 + P                               | HER2                      | MMAE                   | Previously treated advanced UC               | 332        | AE profile, ORR, PK       | Apr 2028                  |
| NCT06225596    | 11/111 | BT8009-100*<br>± P vs.<br>chemotherapy | Nectin-4                  | MMAE                   | Advanced solid tumors including UC           | 956        | PFS, ORR                  | Dec 2030                  |
| NCT06524544    | Ш      | SG + P vs. SG                          | TROP2 (SG)                | SN-38 (SG)             | Previously treated advanced UC               | 384        | OS                        | Dec 2028                  |
| NCT05302284    | Ш      | RC48<br>+ toripalimab                  | HER2                      | MMAE                   | Treatment-naïve UC                           | 452        | PFS, OS                   | Apr 2028                  |

## There are further additional ADCs in development at various stages, including Phase I/Ib clinical trials

Ab, antibody; ADC, antibody—drug conjugate; AE, adverse event; Dato-DXd, datopotamab deruxtecan; DLT, dose-limiting toxicity; EV, enfortumab vedotin; HER2, human epidermal growth factor receptor 2; MMAE, monomethyl auristatin E; ORR, objective response rate; OS, overall survival; P, pembrolizumab; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; PK, pharmacokinetics; RC48, disitamab vedotin; RP2D, recommended Phase II dose; SG, sacituzumab govitecan; ST, sacituzumab tirumotecan; TOPI, topoisomerase I; TROP2, trophoblast cell surface antigen 2; UC, urothelial carcinoma.

Zarrabi KK et al. Am Soc Clin Oncol Educ Book 2025;45:e471924.

75

<sup>\*</sup>Indicated bicycle therapy, which is not a conventional ADC.

# Particular ADCs of interest in the UC space: Sacituzumab govitecan

# Sacituzumab govitecan<sup>1</sup>

## Mechanism of action:

Target: TROP2

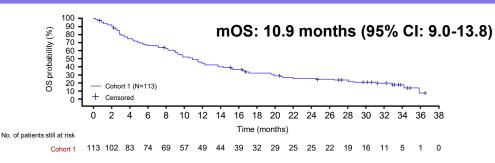
Payload: SN-38 (TOPI inhibitor)

**Stage of clinical development:** Phase III, approved in other solid tumors (e.g., breast)

## TROPiCS-04 Phase III study<sup>2</sup>

#### Patients with:

- LA/mUC
- UT/LT tumors
- Progression within 12 months after PBCT and CPI or cisplatin only in (neo)adjuvant setting


IV SG 10 mg/kg on D1 and D8, every 21 days

Treatment of physician's choice

SG did not meet the primary endpoint of OS in the ITT population<sup>2</sup>

#### TROPHY-U-01 Phase II Cohort 1:3

113 patients with LA/mUC who progressed after prior PBCT and a CPI, and received SG 10 mg/kg on D1 and D8, every 21 days



| Endpoint                                    | Cohort 1 (N=113)                                     |
|---------------------------------------------|------------------------------------------------------|
| Best overall response, n (%) CR PR SD PD NE | 6 (5%)<br>26 (23%)<br>38 (34%)<br>21 (19%)<br>8 (7%) |
| Not assessed*                               | 15 (13%)                                             |
| <b>ORR</b> ,† n (%) [95% CI]                | 31 (27%) [19–37]                                     |
| Clinical benefit rate,‡ n (%) [95% Cl]      | 42 (37%) [28–47]                                     |

<sup>\*</sup>These patients have no post baseline radiologic tumor assessments; †Primary endpoint: CR+PR; ‡CR+PR+SD ≥6 months.

ADC, antibody–drug conjugate; CI, confidence interval; CPI, checkpoint inhibitor; CR, complete response; D, Day; ITT, intention-to-treat; IV, intravenous; LA/mUC, locally advanced/metastatic urothelial carcinoma; LT, lower tract; mOS, median overall survival; ORR, objective response rate; OS, overall survival; NE, not evaluable; PBCT, platinum-based chemotherapy; PD, progressive disease; PR, partial response; SD, stable disease; SG, sacituzumab govitecan; TOPI, topoisomerase I; TROP2, trophoblast cell surface antigen 2; UC, urothelial carcinoma; UT, upper tract.

<sup>1.</sup> Trodelvy (sacituzumab govitecan). Summary of Product Characteristics; 2. Powles T, et al. Ann Oncol 2025;36:561-571; 3. Tagawa ST, et al. J Clin Oncol 2021 39:2474-2485.

# Particular ADCs of interest in the UC space: Trastuzumab deruxtecan [1/2]

## Trastuzumab deruxtecan<sup>1</sup>

## Mechanism of action:

Target: HER2

Payload: DXd (TOPI inhibitor)

**Stage of clinical development:** Phase III, approved in other solid tumors (e.g., breast, NSCLC, gastric)

# Open-label, multicenter, multicohort, Phase II study (DESTINY-PanTumor02)<sup>2</sup>

- Patients with previously treated HER2-expressing solid tumors
- Treatment: T-DXd 5.4 mg/kg IV Q3W (n=40 per cohort)
- Primary endpoint: Confirmed ORR
- Secondary endpoints: DOR, DCR, PFS, OS, safety and tolerability
- Exploratory: Subgroup analyses by: HER2 status and biomarkers

| Characteristic*2                |                | Bladder cancer (n=41) |
|---------------------------------|----------------|-----------------------|
| Age, years                      | Median (range) | 67.0 (43–85)          |
| Race, n (%)                     | White          | 25 (61.0%)            |
|                                 | Asian          | 16 (39.0%)            |
| ECOG PS, n (%)                  | 0              | 19 (46.3%)            |
|                                 | 1              | 22 (53.7%)            |
| HER2 status by enrollment test, | IHC 3+         | 27 (65.9%)            |
| n (%)                           | IHC 2+         | 14 (34.1%)            |
| HER2 status by central testing, | IHC 3+         | 16 (39.0%)            |
| n (%)                           | IHC 2+         | 20 (48.8%)            |
|                                 | IHC 1+         | 2 (4.9%)              |
|                                 | IHC 0          | 2 (4.9%)              |
|                                 | IHC unknown    | 1 (2.4%)              |
| Number of prior regimens        | Median (range) | 2 (0–9%)              |
| Prior regimens, n (%)           | ≤1             | 14 (34.1%)            |
|                                 | ≥2             | 27 (65.9%)            |

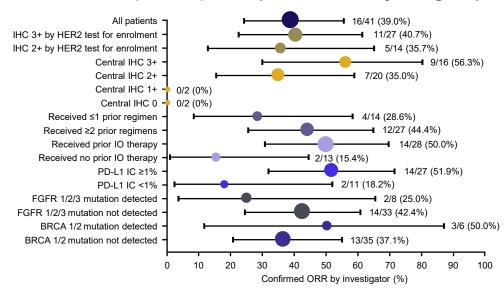
<sup>\*</sup>This table is a revised version of the original table to focus only on bladder cancer.

ADC, antibody–drug conjugate; DCR, disease control rate; DOR, duration of response; DXd, deruxtecan; ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; IV, intravenous; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; T-DXd, trastuzumab deruxtecan; TOPI. topoisomerase I: UC. urothelial carcinoma.

<sup>1.</sup> ENHERTU® (trastuzumab deruxtecan). Summary of Product Characteristics; 2. Meric-Bernstam F, et al. J Clin Oncol 2023;42:47–58.

# Particular ADCs of interest in the UC space: Trastuzumab deruxtecan [2/2]

## Trastuzumab deruxtecan<sup>1</sup>


## Mechanism of action:

Target: HER2

Payload: DXd (TOPI inhibitor)

**Stage of clinical development:** Phase III, approved in other solid tumors (e.g., breast, NSCLC, gastric)

## ORR (95% CI) in all patients and by subgroups



| Characteristic                | All patients           | HER2 IHC 3+           | HER2 IHC 2+           | HER2 IHC 1+    | HER2 IHC 0      |
|-------------------------------|------------------------|-----------------------|-----------------------|----------------|-----------------|
| n                             | 41                     | 16                    | 20                    | 2              | 2               |
| Confirmed ORR, n (%) [95% CI] | 16 (39.0%) [24.2–55.5] | 9 (56.3%) [29.9–80.2] | 7 (35.0%) [15.4–59.2] | 0              | 0               |
| Median DOR, months (95% CI)   | 8.7 (4.3–11.8)         | 8.7 (2.8–10.6)        | 10.3 (4.3–17.8)       | -              | -               |
| Median PFS, months (95% CI)   | 7.0 (4.2–9.7)          | 7.4 (3.0–11.9)        | 7.8 (2.6–11.6)        | 5.5 (4.0-NE)   | 2.6 (1.0-NE)    |
| Median OS, months (95% CI)    | 12.8 (11.2–15.1)       | 13.4 (6.7–19.8)       | 13.1 (11.0–19.9)      | 9.1 (4.8-NE)   | 3.0 (1.0-NE)    |
| DCR at 12 weeks, % (95% CI)   | 70.7 (54.4–83.9)       | 75.0 (47.6–92.7)      | 70.0 (45.7–88.1)      | 100 (15.8–100) | 50.0 (1.3–98.7) |

ADC, antibody—drug conjugate; BRCA, breast cancer gene; CI, confidence interval; DCR, disease control rate; DOR, duration of response; DXd, deruxtecan; FGFR, fibroblast growth factor receptor; HER2, human epidermal growth factor receptor 2; IC, immune cell; IHC, immunohistochemistry; IO, immunotherapy; NE, not evaluable; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; TOPI, topoisomerase I; UC, urothelial carcinoma.

1. ENHERTU® (trastuzumab deruxtecan). Summary of Product Characteristics: 2. Wysocki PJ et al. *J Clin Oncol* 2024;42(Suppl 16):Abstract 4565.

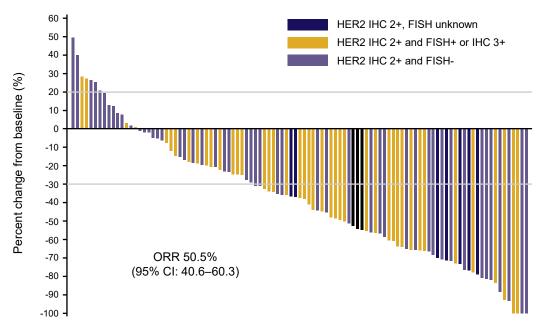
# Particular ADCs of interest in the UC space: Disitamab vedotin (RC48)

## Disitamab vedotin<sup>1,2</sup>

## Mechanism of action:

Target: HER2

Payload: MMAE


**Stage of clinical development:** Phase II studies, approved for use in LA/mUC in China, and in other solid tumors

Combined analysis of Phase II, open-label, multicenter single-arm studies (RC48-C005 & RC48-C009)<sup>2</sup>

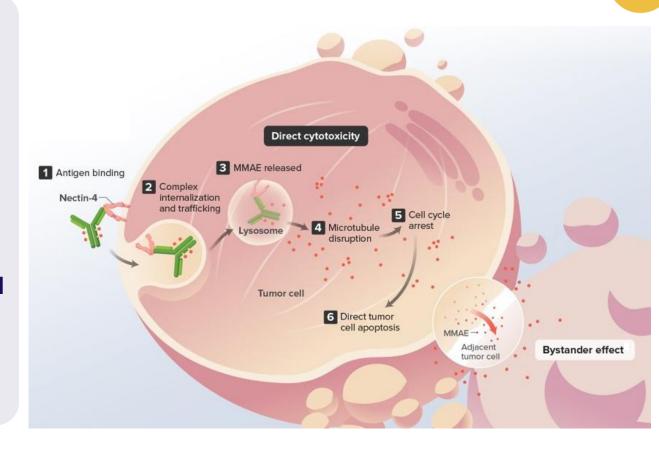
- Unresectable, LA/mUC
- HER2 IHC 2+ or 3+
- Prior treatment with systemic chemotherapy
- Dosing: IV, 2 mg/kg every 2 weeks

| PFS <sup>2</sup>          |                  |
|---------------------------|------------------|
| Median, months (95% CI)   | 5.9 (4.3–7.2)    |
| 12-month rate, % (95% CI) | 24.7 (16.5–33.7) |

## Objective response rate<sup>2</sup>



Patient


| OS <sup>2</sup>              |                  | Confirmed ORR, % (95% CI) <sup>2</sup> |                    |  |
|------------------------------|------------------|----------------------------------------|--------------------|--|
| Median, months (95% CI)      | 14.2 (9.7–18.8)  | IHC 2+ and FISH+ or IHC 3+             | 62.2% (46.5–76.2)* |  |
| 18-month rate, % (95% CI)    | 42.2 (32.5–51.5) | IHC 2+ and FISH-                       | 39.6% (26.5–54.0)* |  |
| OS follow-up, months, median | 20.5             | IHC 2+ and FISH unknown                | 55.6% (21.2–86.3)* |  |

<sup>\*</sup>There is no statistical difference among the three subgroups for RC48-C005, RC48-C09 and overall pooled population with p=0.441, p=0.1649 and p=0.0798, respectively.<sup>2</sup>
ADC, antibody–drug conjugate; CI, confidence interval; FISH, fluorescence *in situ* hybridization; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; IV, intravenous; LA/mUC, locally advanced/metastatic urothelial carcinoma; MMAE, monomethyl auristatin E; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; UC, urothelial carcinoma.

1. Wang D et al. *BMC Cancer* 2025;25:812; 2. Sheng X et al. *J Clin Oncol* 2024;42:1391–1402.

# EV is an ADC that delivers a cytotoxic payload into UC cells via Nectin-4<sup>1</sup>

- EV is an ADC consisting of a Nectin-4-targeting fully human monoclonal antibody attached to the cytotoxic drug MMAE via a linker<sup>1,2</sup>
- By specifically targeting Nectin-4, EV may minimize the risk of off-target toxicities compared with conventional chemotherapy<sup>2,3</sup>
  - Moderate-to-strong Nectin-4 expression
    is observed in a range of UC subtypes,
    whereas the expression of Nectin-4 in normal
    tissue is more limited<sup>1</sup>
- Biomarker testing is not required for administration of EV<sup>1,4,5</sup>



# EV was the first ADC to be approved for the treatment of LA/mUC and is now used globally





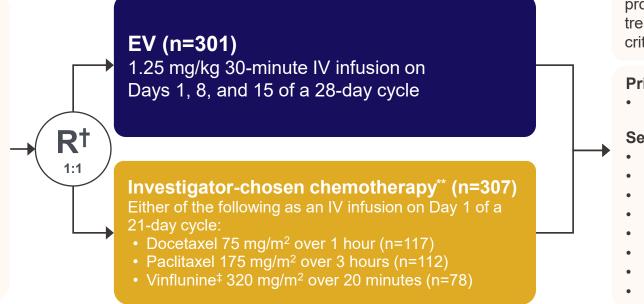
## **Approved indications for EV**<sup>1</sup>

- As **monotherapy** for the treatment of adult patients with LA/mUC who have previously received a platinum-containing chemotherapy and a PD-1/L1 inhibitor
- In combination with pembrolizumab for the 1L treatment of adult patients with unresectable or mUC who are eligible for platinum-containing chemotherapy




## Approvals were based on the EV-301 and EV-302 trials<sup>2,3</sup>

- In EV-301, the efficacy and safety of EV vs. PBCT were assessed in patients with LA/mUC who were previously treated with PBCT and a PD-1/L1 inhibitor
- In EV-302, the efficacy and safety of EV+P vs. PBCT were assessed in previously untreated patients with advanced mUC


P, pembrolizumab; PBCT, platinum-based chemotherapy; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1.

# EV-301 compared the efficacy and safety of EV with chemotherapy in patients with previously treated LA/mUC





- ECOG PS 0 or 1
- Disease progression during or after PD-1/L1 inhibitor treatment
- Prior platinum-based chemotherapy\*



Until radiological disease progression or other treatment discontinuation criteria are met

#### **Primary endpoint**

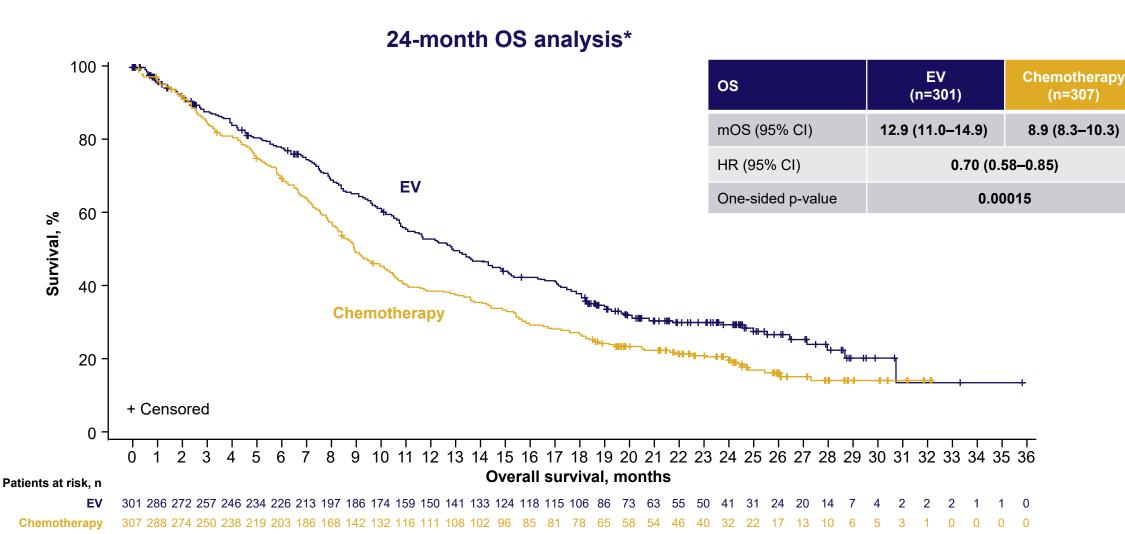
OS

#### Secondary endpoints

- PFS<sup>††</sup>
- ORR \*\*
- DCR<sup>††</sup>
- CRR<sup>††</sup>
- DOR\*\*
- QoL
- PROs
- Safety and tolerability

82

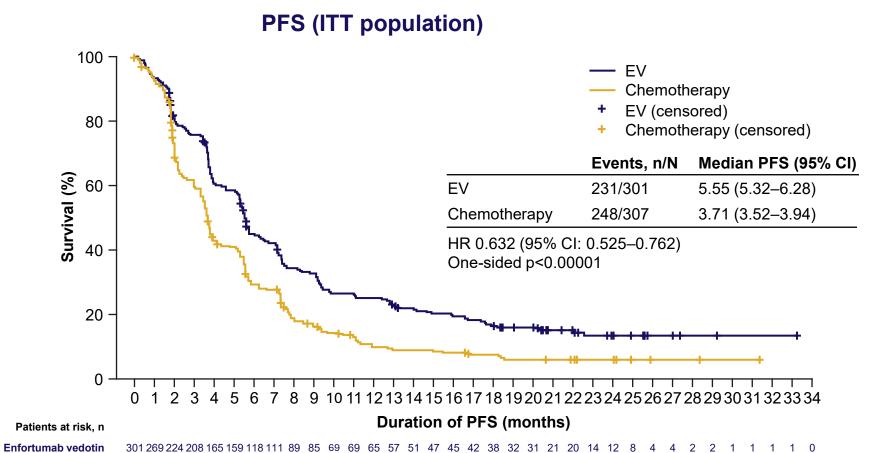
A pre-specified interim analysis was performed after 65% of patients had died. The results of the interim analysis were published in 2021 after a median follow-up of 11.1 months and are presented herein. Trial met superiority threshold at the time of interim analysis


Powles T et al. N Engl J Med 2021:384:1125-1135.

<sup>\*</sup>In EV-301 for patients who had received platinum chemotherapy as neoadjuvant or adjuvant therapy, progression must have occurred within 12 months after completion of treatment. †Stratification variables were ECOG PS (0 or 1), geographic region (USA, Western Europe, or rest of the world), and presence of liver metastasis; ‡Regimen selected by the investigator before randomisation;

\*\*The use of vinflunine was limited to 35% of patients in the trial and was an option only in regions where it was approved for the treatment of UC: ††According to RECIST v1.1.

CRR, complete response rate; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EV, enfortumab vedotin; IV, intravenous; LA/mUC, locally advanced/metastatic urothelial carcinoma; ORR, overall response rate; OS, overall survival; PD-1/L1, programmed cell death protein 1/ligand 1; PFS, progression-free survival; PRO, patient-reported outcome; QoL, quality of life; R, randomisation; RECIST, Response Evaluation Criteria in Solid Tumours.


# At a median follow-up of 24 months, the risk of death was reduced by 30% with EV vs. chemotherapy



<sup>\*</sup>This was an exploratory analysis. The study met threshold for superiority at time of interim analysis. CI, confidence interval; EV, enfortumab vedotin; HR, hazard ratio; mOS, median overall survival; OS, overall survival. Rosenberg JE et al. *Ann Oncol* 2023;13:1047–1054.

At a median follow-up of 24 months, the risk of progression or death was significantly reduced with EV by 37% compared with chemotherapy





307 260 201 167 117 108 76 72 46 40 32 29 21 20 19 19 17 14 14 11 11 10 9 7 7 3 2

CI, confidence interval; EV, enfortumab vedotin; HR, hazard ratio; ITT, intention-to-treat; PFS, progression-free survival. Rosenberg JE et al. *Ann Oncol* 2023;13:1047–1054.

Chemotherapy

# TRAE rates at 24 months in the EV and chemotherapy groups were consistent with the interim analysis

| TDAFa = (0/)*                 | EV grou    | ıp (n=296)† | Chemotherapy group (n=291) <sup>†</sup> |            |  |
|-------------------------------|------------|-------------|-----------------------------------------|------------|--|
| TRAEs, n (%)*                 | Any grade  | Grade ≥3    | Any grade                               | Grade ≥3   |  |
| Any AE                        | 278 (93.9) | 155 (52.4)  | 267 (91.8)                              | 147 (50.5) |  |
| Alopecia                      | 135 (45.6) | NR          | 108 (37.1)                              | NR         |  |
| Peripheral sensory neuropathy | 103 (34.8) | 15 (5.1)    | 63 (21.6)                               | 6 (2.1)    |  |
| Pruritus                      | 96 (32.4)  | 4 (1.4)     | 14 (4.8)                                | 1 (0.3)    |  |
| Fatigue                       | 93 (31.4)  | 20 (6.8)    | 66 (22.7)                               | 13 (4.5)   |  |
| Decreased appetite            | 92 (31.1)  | 9 (3.0)     | 69 (23.7)                               | 5 (1.7)    |  |
| Diarrhea                      | 74 (25.0)  | 10 (3.4)    | 49 (16.8)                               | 5 (1.7)    |  |
| Dysgeusia                     | 73 (24.7)  | NR          | 22 (7.6)                                | NR         |  |
| Nausea                        | 71 (24.0)  | 3 (1.0)     | 64 (22.0)                               | 4 (1.4)    |  |
| Maculopapular rash            | 50 (16.9)  | 22 (7.4)    | 5 (1.7)                                 | 0          |  |
| Anemia                        | 34 (11.5)  | 8 (2.7)     | 63 (21.6)                               | 23 (7.9)   |  |
| Decreased neutrophil count    | 31 (10.5)  | 18 (6.1)    | 51 (17.5)                               | 41 (14.1)  |  |
| Neutropenia                   | 20 (6.8)   | 14 (4.7)    | 25 (8.6)                                | 18 (6.2)   |  |
| Decreased white cell count    | 15 (5.1)   | 4 (1.4)     | 32 (11.0)                               | 21 (7.2)   |  |
| Febrile neutropenia           | 2 (0.7)    | 2 (0.7)     | 16 (5.5)                                | 16 (5.5)   |  |

Disclaimer: PADCEV (enfortumab vedotin) can cause severe skin reactions, including Stevens–Johnson syndrome and toxic epidermal necrolysis (predominantly during the first cycle of treatment).
\*Occurring in ≥20% of patients in either treatment group or Grade ≥3 TRAEs occurring in ≥5% of patients in either treatment group; †Safety population.
AE, adverse event; EV, enfortumab vedotin; NR, not reported; TRAE, treatment-related adverse event.
Rosenberg JE et al. *Ann Oncol* 2023;13:1047–1054.

# Summary



ADCs are an exciting new class of treatment for solid tumors<sup>1,2</sup>



ADCs have both **cytotoxic** and **immunomodulatory** effects<sup>3</sup>



Many ADCs are being investigated both in **monotherapy** and **combination** for the treatment of UC<sup>1</sup>



EV was the **first ADC to be approved** for the treatment of LA/mUC, based on efficacy and safety vs. platinum-based ChT as demonstrated in Phase III clinical trials, and is now used globally<sup>4–6</sup>





# Please refer to the Korean PI for PADCEV® (enfortumab vedotin) via the following link or QR Code:





# What is the optimal sequence of treatment for metastatic urothelial carcinoma

# **Professor Daniel Petrylak**

Director of Genitourinary Oncology, Yale University Cancer Center, New Haven, USA

EV as first-line therapy is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer. Combination therapy with pembrolizumab.

EV as monotherapy is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 or programmed death-ligand 1 inhibitor, and have received a platinum-containing chemotherapy

EV, enfortumab vedotin. PADCEV® (enfortumab vedotin). Prescribing Information



For Korea, healthcare professionals are asked to report any suspected adverse reactions to Astellas Pharma Korea. Inc

(Telephone: +82 10 5254 3389; Email: safety-kr@kr.astellas.com)

Prescribing information is available at the end of this presentation. This promotional meeting is fully sponsored and supported by Astellas, including speaker-related honoraria and production of materials. It is intended for healthcare professionals only.



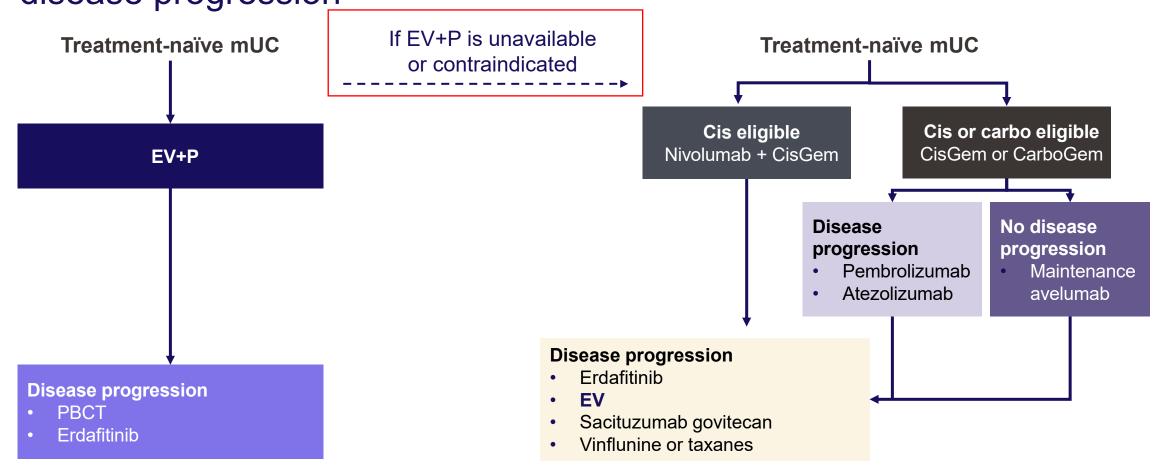




# **Disclaimers**



The information, views, and opinions presented herein are those of the presenter, and the presenter is solely responsible for the materials being introduced in this presentation. Although patients' cases mentioned herein are actual cases, treatment may differ from local approval product information.

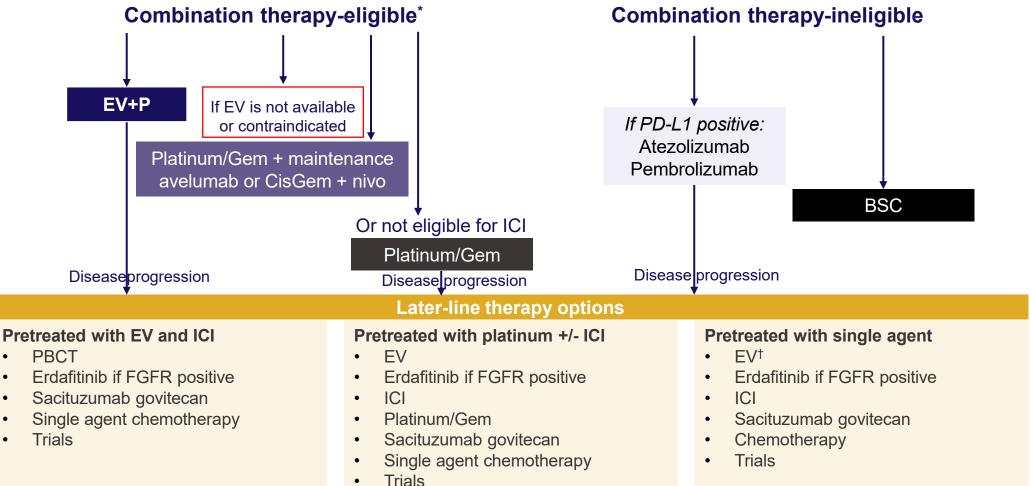

Such information, views and opinions of the presenter do not necessarily reflect the information, views and opinions of Astellas Pharma Ltd. Astellas Pharma Ltd does not recommend the use of any product in any different manner than as described in the local approval information, and complies with all applicable laws, regulations, and company policies.

# **Disclosures**

**Consulting Fees:** Abbie vie, Exelixis, Corbus, Bicycle Therapeutics, Merck, Astellas, Bristol Myers, Jonhson and Jonhson, Pfizer, Novartis, Gilead, Flare Therapeutics

**Research Support:** Novartis, Bicycle Therapeutics, Amgen, Corbus, Arvinas, Gilead, Bioexcel, Genetech, Flare Therapeutics

In 2L, EV monotherapy is recommended by the ESMO clinical guidelines treatment of unresectable/mUC following disease progression




Disclaimer: EV+P is not approved for the 1L treatment of unresectable or mUC in adults in some countries/regions. All HCPs should refer to their own country's specific Prescribing Information. Figure adapted from Powles T et al. 2024.

Powles T et al. *Ann Oncol* 2024:35:485–490.

<sup>1</sup>L, first line; Carbo; carboplatin; Cis, cisplatin; ESMO, European Society for Medical Oncology; EV, enfortumab vedotin; Gem, gemcitabine; HCP, healthcare professional; m, metastatic; P, pembrolizumab; PBCT, platinum-based chemotherapy; UC, urothelial carcinoma.

# In 2L, EV monotherapy is recommended by the EAU clinical guidelines for the treatment of unresectable/mUC



Disclaimer: EV+P is not approved for the 1L treatment of unresectable or metastatic UC in adults in some countries/regions. All HCPs should refer to their own country's specific Prescribing Information. Figure adapted from 2024 EAU Muscle-invasive and metastatic bladder cancer Guidelines.

<sup>\*</sup>PS 0-2, GFR > 30 ml/min, adequate rogan functions, for cisplatin: GFR > 50 ml/min; †The indication for enfortumab vedotin monotherapy as per the SmPC requires patients to have previously received a platinum-containing chemotherapy and a PD-1/-L1 inhibitor.

<sup>1</sup>L, first line; BSC, best supportive care; Carbo; carboplatin; Cis, cisplatin; EAU, European Association of Urology; EV, enfortumab vedotin; HCP, healthcare professional; ICI, immune checkpoint inhibitor; Gem, gemcitabine; m, metastatic; P, pembrolizumab; PBCT, platinum-based chemotherapy; PD-L1, programmed death-ligand 1; UC, urothelial carcinoma.

EAU. Muscle-invasive and metastatic bladder cancer. Available at: https://www.uroweb.org/quidelines/muscle-invasive-and-metastatic-bladder-cancer. Last accessed: June 2025.

# Phase 3 EV-301 trial: Study design

## An international, open-label, randomised Phase III study



# Adult patients with unresectable LA/mUC (N=608)

- ECOG PS 0 or 1
- Disease progression during or after PD-1/L1 inhibitor treatment
- Prior platinum-based chemotherapy\*

Investigator-chosen chemotherapy\*\* (n=307)
Either of the following as an IV infusion on Day 1 of a 21-day cycle:

• Docetaxel 75 mg/m² over 1 hour (n=117)
• Paclitaxel 175 mg/m² over 3 hours (n=112)
• Vinflunine‡ 320 mg/m² over 20 minutes (n=78)

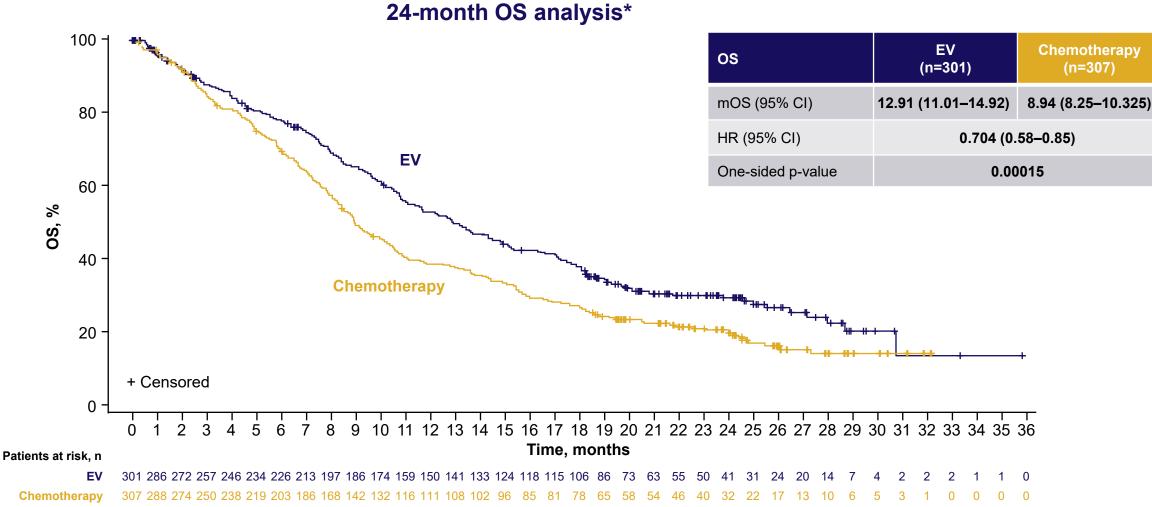
Until radiological disease progression or other treatment discontinuation criteria are met

Radiologic assessment of tumor response status was performed at baseline and every 8 weeks

#### **Primary endpoint**

OS

#### **Secondary endpoints**


- PFS ††
- ORR\*\*
- DCR<sup>††</sup>
- CRR \*\*
- DOR\*\*
- QoL
- PROs
- Safety and tolerability

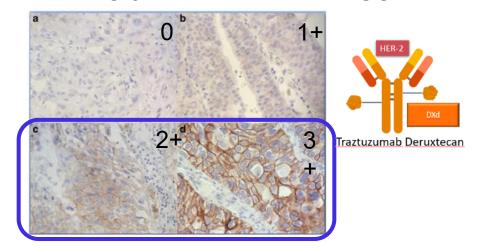
<sup>\*</sup>In EV-301 for patients who had received platinum chemotherapy as neoadjuvant or adjuvant therapy, progression must have occurred within 12 months after completion of treatment. †Stratification variables were ECOG PS (0 or 1), geographic region (USA, Western Europe, or rest of the world), and presence of liver metastasis; ‡Regimen selected by the investigator before randomisation;

\*\*The use of vinflunine was limited to 35% of patients in the trial and was an option only in regions where it was approved for the treatment of UC; ††According to RECIST v1.1.

CRR, complete response rate; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EV, enfortumab vedotin; IV, intravenous; LA/mUC, locally advanced/metastatic urothelial carcinoma; ORR, overall response rate; OS, overall survival; PD-1/L1, programmed cell death protein 1/ligand 1; PFS, progression-free survival; PRO, patient-reported outcome; QoL, quality of life; R, randomisation; RECIST, Response Evaluation Criteria in Solid Tumours. Powles T et al. N Engl J Med 2021;384:1125–1135.

# EV-301: Overall survival (primary endpoint)




<sup>\*</sup>This was an exploratory analysis. The study met threshold for superiority at time of interim analysis. CI, confidence interval; EV, enfortumab vedotin; HR, hazard ratio; mOS, median overall survival; OS, overall survival. Rosenberg JE et al. *Ann Oncol* 2023;13:1047–1054.

# Biomarker-directed options



## HER2: Trastuzumab deruxtecan<sup>1,2</sup>

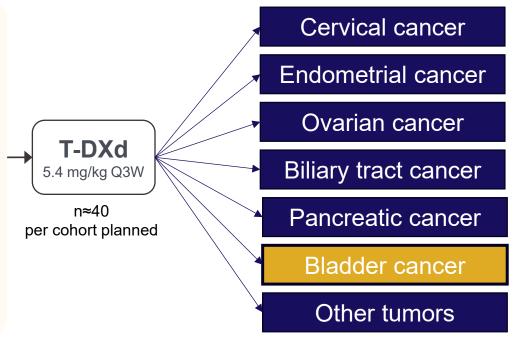
- Requires IHC testing (2+/3+)
- IHC 3+: 12% incidence in UC



## FGFR3: Erdafitinib<sup>3</sup>

- Must have a susceptible FGFR3
   <u>mutation</u> (R248C, S249C, G370C, or Y373C)

   or <u>fusion</u> (TACC3\_V1, TACC3\_V3, or BAIAP2L1)
- ~20% incidence in advanced UC




# DESTINY-PanTumor02: Study Design





- Advanced solid tumors not eligible for curative therapy
- 2L patient population
- HER2 (IHC 3+ or 2+)
- Receipt of prior HER2-targeting agents allowed
- ECOG PS 0–1



Cohorts with no objective responses in the first 15 patients were to be closed

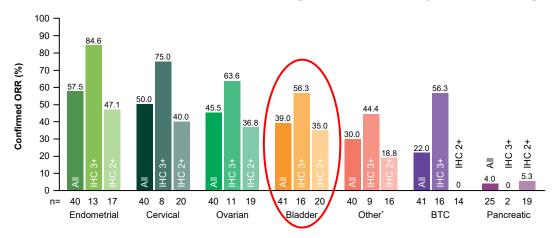
#### **Primary endpoint**

 Confirmed ORR (investigator)

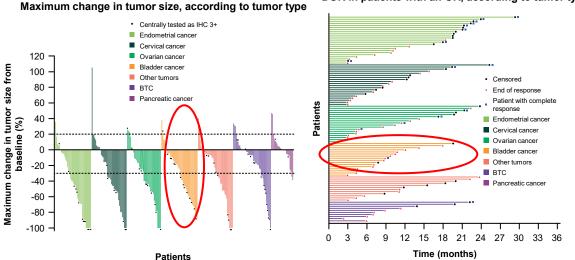
#### Secondary endpoints

- DOR
- DCR
- PFS
- OS
- Safety

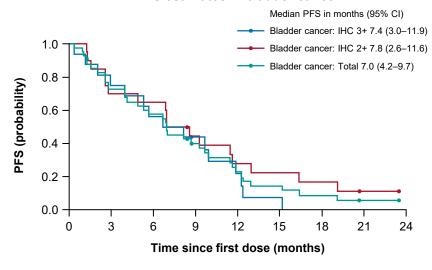
#### Data cut-off for analysis:


• June 8, 2023

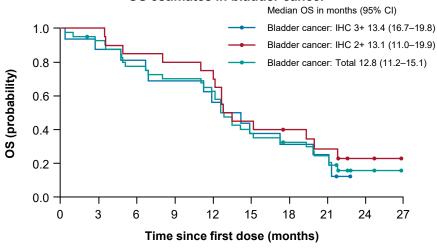
2L, second-line; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan.


Meric-Bernstam F, et al. J Clin Oncol. 2024;42(1):47-58.

# DESTINY-PanTumor02: Efficacy in bladder cancer


#### ORR across tumor cohorts, according to HER2 status by central testing




#### DOR in patients with an OR, according to tumor type

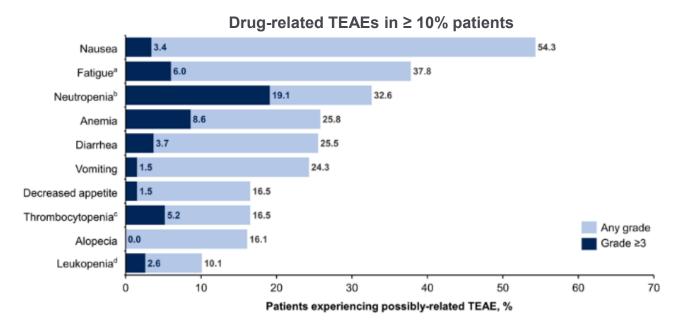


#### PFS estimates in bladder cancer



#### OS estimates in bladder cancer




<sup>\*</sup>Responses in the other tumors cohort include responses in extramammary Paget disease, oropharyngeal neoplasm, head and neck cancer, and salivary gland cancer

BTC, biliary tract cancer; CI, confidence interval; DOR, duration of response; IHC, immunohistochemistry; OR, objective response; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

Meric-Bernstam F, et al. J Clin Oncol. 2024;42(1):47-58.

# DESTINY-PanTumor02: Safety

| Overall safety summary                                   | All patients, n (%)<br>N=267 |
|----------------------------------------------------------|------------------------------|
| Any drug-related TEAEs                                   | 225 (84.3)                   |
| Drug-related TEAEs Grade ≥3                              | 103 (38.6)                   |
| Serious drug-related TEAEs                               | 32 (12.0)                    |
| Drug-related TEAEs associated with dose discontinuations | 22 (8.2)                     |
| Drug-related TEAEs associated with dose interruptions    | 49 (18.4)                    |
| Drug-related TEAEs associated with dose reductions       | 50 (18.7)                    |
| Drug-related TEAEs associated with deaths                | 2 (0.7)*                     |



| ILD/pneumonitis adjudio | ILD/pneumonitis adjudicated as T-DXd related |  |  |  |  |  |
|-------------------------|----------------------------------------------|--|--|--|--|--|
| Grade                   | All patients, n (%)<br>n = 267               |  |  |  |  |  |
| 1                       | 6 (2.2)                                      |  |  |  |  |  |
| 2                       | 12 (4.5)                                     |  |  |  |  |  |
| 3                       | 1 (0.4)                                      |  |  |  |  |  |
| 4                       | 0                                            |  |  |  |  |  |
| 5                       | 1 (0.4)                                      |  |  |  |  |  |
| Any                     | 20 (7.5)                                     |  |  |  |  |  |

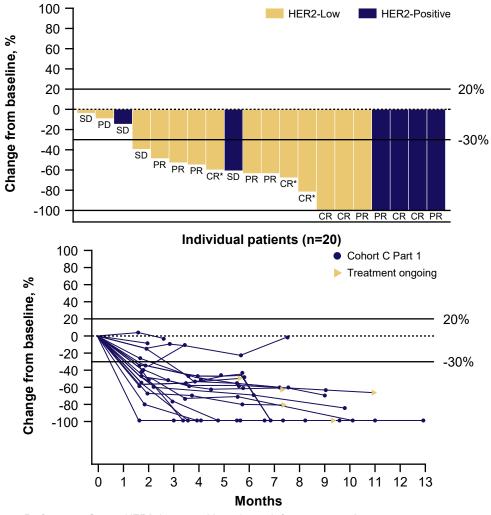
| Left ventricular dysfunction   |  |  |  |  |  |  |
|--------------------------------|--|--|--|--|--|--|
| All patients, n (%)<br>n = 267 |  |  |  |  |  |  |
| 1 (0.4)                        |  |  |  |  |  |  |
| 4 (4.5)                        |  |  |  |  |  |  |
| 1 (0.4)                        |  |  |  |  |  |  |
| 0                              |  |  |  |  |  |  |
| 0                              |  |  |  |  |  |  |
| 7 (2.6)                        |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |

<sup>\*</sup>Occurred in one patient.

TEAE, treatment-emergent adverse event; T-DXd, trastuzumab deruxtecan Meric-Bernstam F, et al. *J Clin Oncol*. 2024;42(1):47-58.

# DESTINY-PanTumor01: ORR

- Phase 2 global basket study
- Patients with advanced solid tumors harboring prespecified HER2 mutations
- Progressed on previous systemic therapy
- Trastuzumab deruxtecan 5.4 mg/kg Q3W
- Primary endpoint: ORR by central review


|                                 |     | ORR by IC | QR   |
|---------------------------------|-----|-----------|------|
|                                 | N   | N         | %    |
| All patients                    | 102 | 30        | 29.4 |
| Tumor type                      |     |           |      |
| Breast                          | 20  | 10        | 50.0 |
| Colorectal                      | 20  | 4         | 20.0 |
| Biliary tract                   | 19  | 2         | 10.5 |
| Esophageal/esophagogastric      | 11  | 1         | 9.1  |
| Urothelial                      | 7   | 2         | 28.6 |
| Salivary gland/head and neck AC | 6   | 4         | 66.7 |
| Small intestinal AC             | 5   | 0         | -    |
| Cervical                        | 3   | 2         | 66.7 |
| Endometrial                     | 2   | 2         | 100  |
| Other neuroendocrine            | 2   | 1         | 50.0 |
| Pancreatic                      | 2   | 0         | -    |
| AC of unknown primary origin    | 1   | 1         | 100  |
| Extramammary Paget's disease    | 1   | 1         | 100  |
| Melanoma                        | 1   | 0         | 0    |
| Ovarian                         | 1   | 0         | 0    |
| Urachal                         | 1   | 0         | 0    |
| HER2m domain                    |     |           |      |
| Tyrosine kinase                 | 52  | 19        | 36.5 |
| Extracellular                   | 34  | 10        | 29.4 |
| Transmembrane/juxtamembrane     | 17  | 1         | 5.9  |

| Phase 2 trial of disitamab vedotin + pembrolizumab | in |
|----------------------------------------------------|----|
| treatment-naïve HER2-expressing aUC: Cohort C      |    |

| Baseline characteristic                                                                                          | Cohort C<br>N=20                   |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Male, n %)                                                                                                       | 15 (75.0)                          |
| Age (years), median (range)                                                                                      | 75.0 (58–86)                       |
| White, n (%)                                                                                                     | 17 (85.0)                          |
| ECOG PS, n (%)<br>0<br>1                                                                                         | 8 (40.0)<br>12 (60.0)              |
| HER2 status, n (%) HER2-positive (IHC 3+ or IHC 2+ and ISH-positive) HER2-low (IHC 2+and ISH-negative or IHC 1+) | 6 (30.0)<br>14 (70.0)              |
| <b>PD-L1 status</b> , n (%)<br>CPS ≥10<br>CPS <10                                                                | 18 (90.0)<br>8 (40.0)<br>10 (50.0) |
| Primary tumour location, n (%) Bladder Renal pelvis Ureter                                                       | 12 (60.0)<br>6 (30.0)<br>2 (10.0)  |
| Metastatic disease sites, n (%) Visceral disease Liver Lymph-node only disease                                   | 15 (75.0)<br>4 (20.0)<br>4 (20.0)  |

| Patient disposition and exposure           | Cohort C<br>N=20 |
|--------------------------------------------|------------------|
| Median follow up (months), median (range)  | 9.0 (4–16)       |
| Median number of doses for DV (Q2W), range | 7.5 (3–18)       |
| Median number of doses for P (Q2W), range  | 3.5 (1–11)       |
| Patients on treatment, n (%)               | 6 (30.0)         |
| Patients off treatment, n (%)              | 14 (70.0)        |
| Patients off study, n (%)                  | 5 (25.0)         |

| Overall population                                                                                                | Cohort C<br>N=20                            |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Confirmed ORR, n (%)                                                                                              | 15 (75.0) [95% CI: 50.9–91.3]               |
| Best overall response,<br>n (%)<br>Complete response<br>Partial response<br>Stable disease<br>Progressive disease | 7 (35.0)<br>8 (40.0)<br>4 (20.0)<br>1 (5.0) |
| HER2 positive group                                                                                               | n=6                                         |
| Confirmed ORR, n (%)                                                                                              | 4 (66.7) [95% CI: 22.3–95.7]                |
| HER2 positive group                                                                                               | n=14                                        |
| Confirmed ORR, n (%)                                                                                              | 11 (78.6) [95% CI: 49.2–95.3]               |



a, advanced; CPS, combined positive score; CR, complete response; DV, disitamab vedotin; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; ORR, overall response rate; P, pembrolizumab; PD-L1, programmed death-ligand 1; PR, partial response; Q2W, every 2 weeks; Q6W, every 6 weeks; SD, stable disease; UC, urothelial carcinoma.

Galsky MD, et al. ESMO 2024. Abstract 1967MO.

# Phase III THOR trial: Study design<sup>1–3</sup>

## Key inclusion criteria

- Unresectable or metastatic UC (minority component histologies permitted)
- FGFR inhibitor clinical trial assay to determine molecular eligibility
- One or two lines of prior systemic therapy
- ECOG PS 0-2

Cohort 1:
Prior PD-1/L1
treatment

Cohort 2:
No prior PD-1/L1
treatment

R

Erdafitinib 8 mg PO QD, n=136

Docetaxel or vinflunine IV
Day 1 of a 21-day cycle, n=130

Erdafitinib 8 mg PO QD, n=175

Erdafitinib 8 mg PO QD, n=175

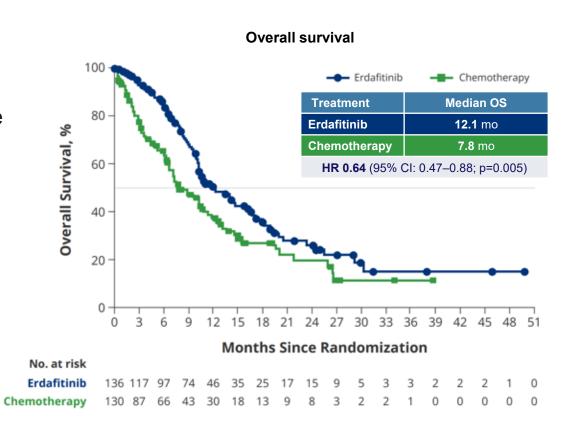
Pembrolizumab IV
Day 1 of a 21-day cycle, n=176

**Primary endpoint:** Overall survival

**Secondary endpoints:** PFS, ORR, duration of response, safety, PROs, pharmacokinetics

# Phase III THOR trial (Cohort 1): Overall survival




- Approximately 20% of patients with advanced UC have FGFR alterations
- Erdafitinib is an oral, selective, pan-FGFR tyrosine kinase inhibitor

## Key eligibility criteria

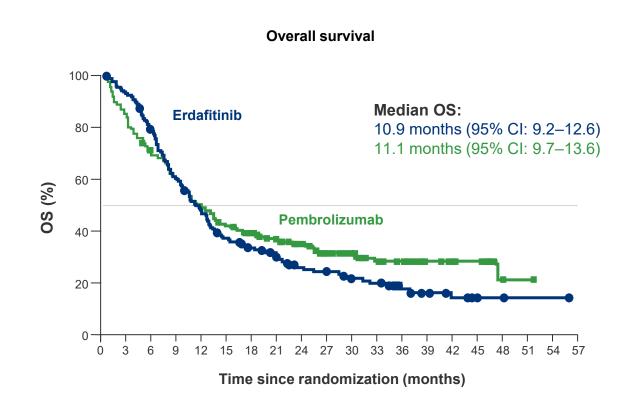
- Unresectable or metastatic UC
- Progressed on or after ≥1 prior treatment that included an anti–PD-(L)1
- Select FGFR3/2alt (mutation/fusion)
- ECOG PS 0–2
- No more than 2 prior lines of treatment

Erdafitinib (n=136) 8 mg PO once daily; up-titration to 9 mg

Chemo (n=130)
Docetaxel or vinflunine every
3 weeks

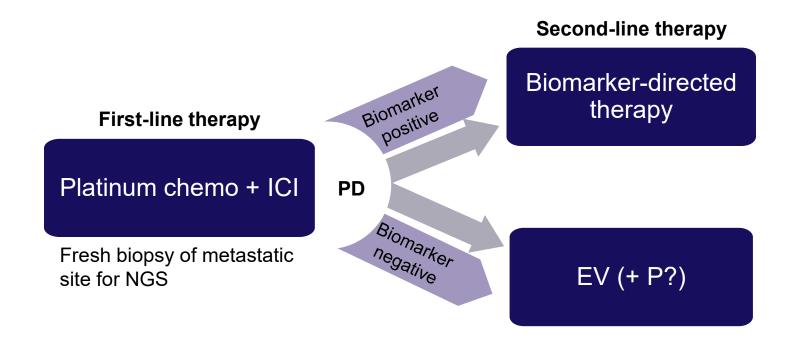


### Phase III THOR trial (Cohort 1): Safety


| AEs occurring in ≥30% (any grade) or ≥5% (Grade 3/4) of | Erdafitinib (n=135) |           | Chemotherapy (n=112) |           |
|---------------------------------------------------------|---------------------|-----------|----------------------|-----------|
| patients, n (%)                                         | Any grade           | Grade 3/4 | Any grade            | Grade 3/4 |
| Hyperphosphatemia                                       | 108 (80.0)          | 7 (5.2)   | 0                    | 0         |
| Diarrhea                                                | 84 (62.2)           | 4 (3.0)   | 19 (17.0)            | 3 (2.7)   |
| Stomatitis                                              | 65 (48.1)           | 11 (8.1)  | 14 (12.5)            | 2 (1.8)   |
| Dry mouth                                               | 53 (39.3)           | 0         | 4 (3.6)              | 0         |
| PPE syndrome                                            | 41 (30.4)           | 13 (9.6)  | 1 (0.9)              | 0         |
| Onycholysis                                             | 31 (23.0)           | 8 (5.9)   | 1 (0.9)              | 0         |

| AEG of interest in (9/)                              | Erdafitinib (n=135) |           | Chemotherapy (n=112) |           |
|------------------------------------------------------|---------------------|-----------|----------------------|-----------|
| AEs of interest, n (%)                               | Any grade           | Grade 3/4 | Any grade            | Grade 3/4 |
| Nail disorders                                       | 90 (66.7)           | 15 (11.1) | 6 (5.4)              | 0         |
| Skin disorders                                       | 74 (54.8)           | 16 (11.9) | 14 (12.5)            | 0         |
| Eye disorders (excluding central serous retinopathy) | 57 (42.2)           | 3 (2.2)   | 6 (5.4)              | 0         |
| Central serous retinopathy                           | 23 (17.0)           | 3 (2.2)   | 0                    | 0         |

- One treatment-related death occurred in the erdafitinib group (sudden death)
- In total, 11 patients (8.1%) discontinued study treatment with erdafitinib due to treatment-related AEs


### Phase III THOR (Cohort 2): Overall survival

- The primary endpoint was not met
- Median OS was 10.9 months (95% CI: 9.2–12.6) with erdafitinib and 11.1 months (95% CI: 9.7–13.6) with pembrolizumab
  - HR 1.18 (95% CI: 0.92–1.51; p=0.18)

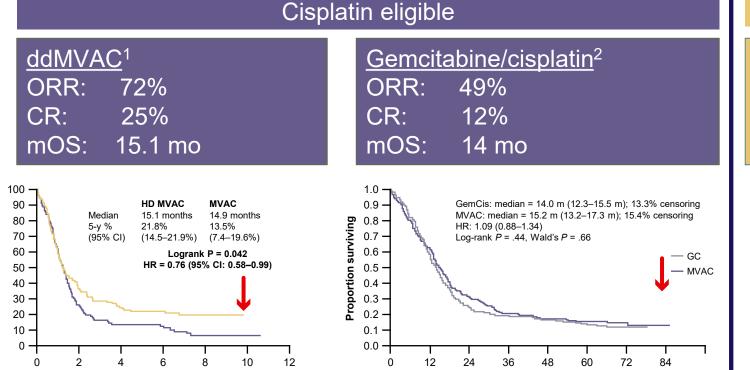


## Sequencing therapies when EV+P is NOT used in the first line





## First-line standard of care is EV+P for almost all patients; second-line therapy is now a data-free zone...

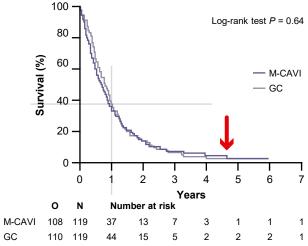

- EV+P is now the standard of care first-line therapy for advanced UC<sup>1</sup>
  - Many patients experience durable responses<sup>2</sup>
  - However, most still eventually develop resistance<sup>2</sup>
- To date, there are no prospective clinical trials reporting efficacy in the second-line setting after disease progression on EV+P<sup>2</sup>

#### Second-line options include:2

- Platinum-based chemotherapy
- Biomarker-directed therapy (HER2, FGFR3)
- Taxane chemotherapy
- Clinical trial

## Platinum may still be active: Extrapolating from prior firstline datasets (before the era of ICIs)






#### Cisplatin ineligible

Gemcitabine/carboplatin<sup>3</sup>

36%

9.3 mo



Months

29

GC

MVAC

Number at risk

125

203

202

Treatment

— MVAC

— HD MVAC

Years

11

23

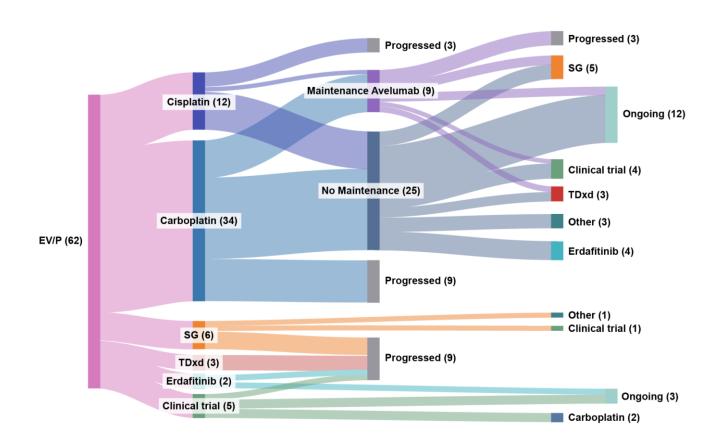
Number at risk

15

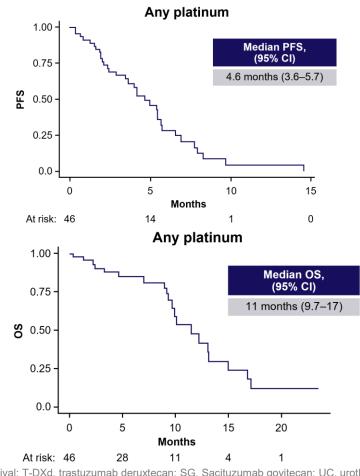
29

0

112 129


101 134

CI, confidence interval; Cis, cisplatin; CR, complete response; (dd)MVAC, (dose-dense) methotrexate, vinblastine, doxorubicin + cisplatin; Gem, gemcitabine; HD, high-dose; HR, hazard ratio; ICI, immune checkpoint inhibitor; M-CAVI, carboplatin, methotrexate, and vinblastine; m/mo, months; mOS, median overall survival; ORR, overall response rate; y, years.


<sup>1.</sup> Sternberg C et al. Eur J Cancer 2006;42:50-54: 2, von der Maase H et al. J Clin Oncol 2005;23;4602-4608: 3, de Santis M et al. J Clin Oncol 2012;30:191-199.

### Treatment after EV+P for first-line UC

#### **Treatment patterns after EV+P**



## OS and PFS in patients who received PBCT following progression on EV+P (n=46)

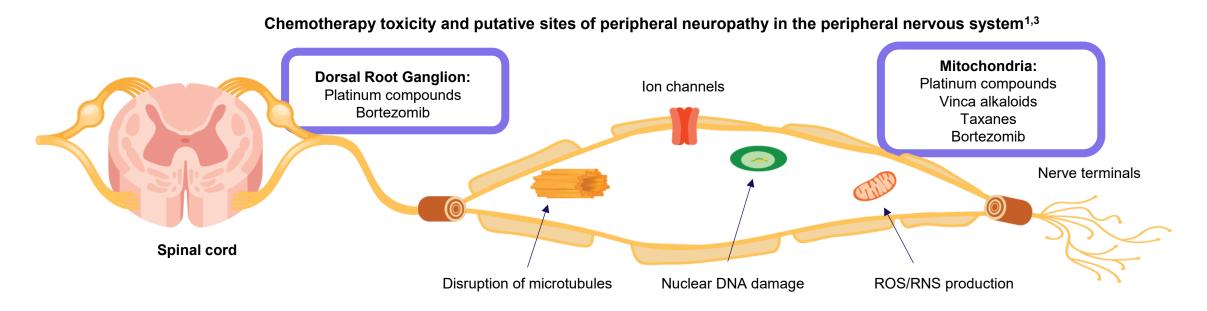


108

Sternschuss M et al. Presented at ASCO 2025. Abstract 4573.

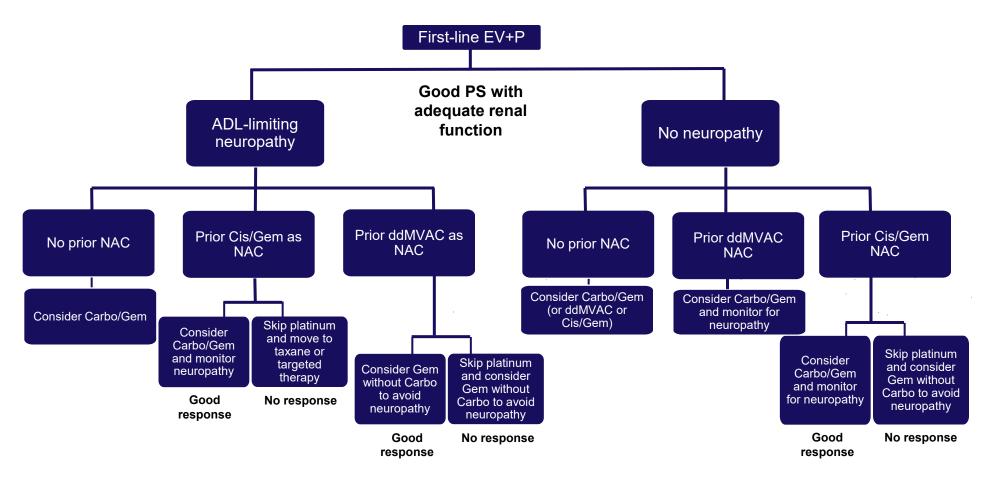
CI, confidence interval; EV, enfortumab vedotin; OS, overall survival; P, pembrolizumab; PBCT, platinum-based chemotherapy; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan; SG, Sacituzumab govitecan; UC, urothelial carcinoma

### EV-302: Subsequent therapy

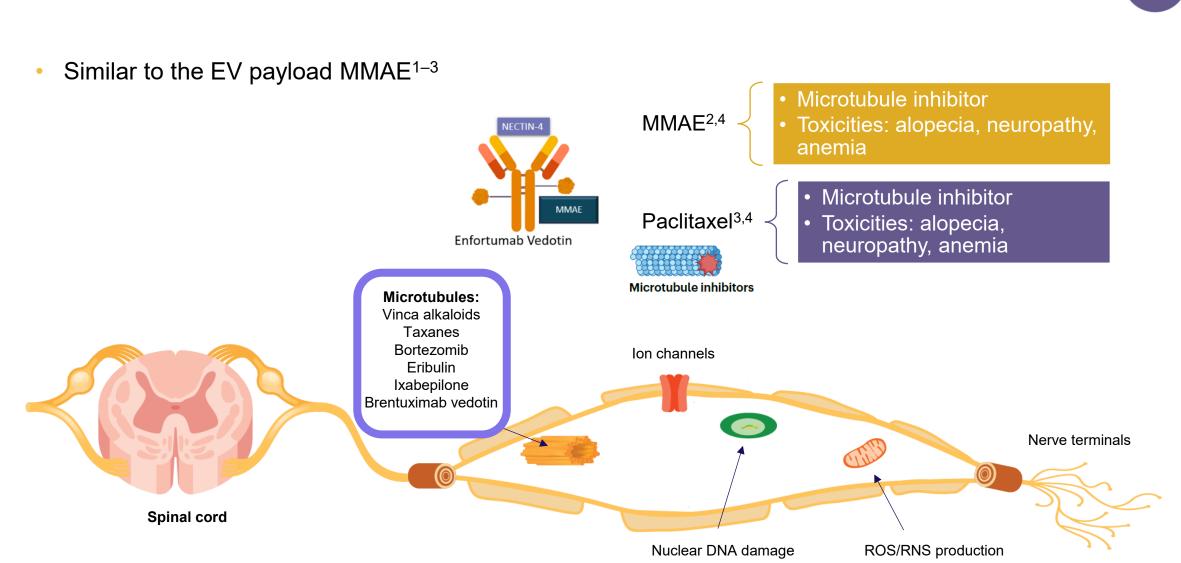

| Parameters                                            | EV+P<br>(n=442) | Chemotherapy<br>(n=444) |
|-------------------------------------------------------|-----------------|-------------------------|
| Number of patients (%)                                |                 |                         |
| Patients who remained on treatment                    | 144 (32.6)      | 0                       |
| Patients who received subsequent anticancer therapies | 140 (31.7)      | 313 (70.5)              |
| First subsequent systemic therapy                     | 128 (29.0)      | 294 (66.2)              |
| PBCT                                                  | 110 (24.9)      | 17 (3.8)                |
| PD-1/L1 inhibitor-containing treatment                | 7 (1.6)         | 260 (58.6)              |
| Maintenance therapy*†                                 | 0               | 143 (32.2)              |
| Avelumab                                              | 0               | 135 (30.4)              |
| Other therapy                                         | 7 (1.6)         | 117 (26.4)              |

Of those who progressed on EV+P and received subsequent therapy, 79% received platinum-based therapy

<sup>\*</sup>Included atezolizumab, avelumab, ipilimumab, M6223, nivolumab, NKTR-255, and pembrolizumab; †Maintenance therapy was permitted in the trial after PBCT. EV, enfortumab vedotin; P, pembrolizumab; PBCT, platinum-based chemotherapy; PD-1/L1, programmed cell death protein 1/ligand 1. Powles T et al. *N Engl J Med* 2024;390:875–888 (Supplementary data).

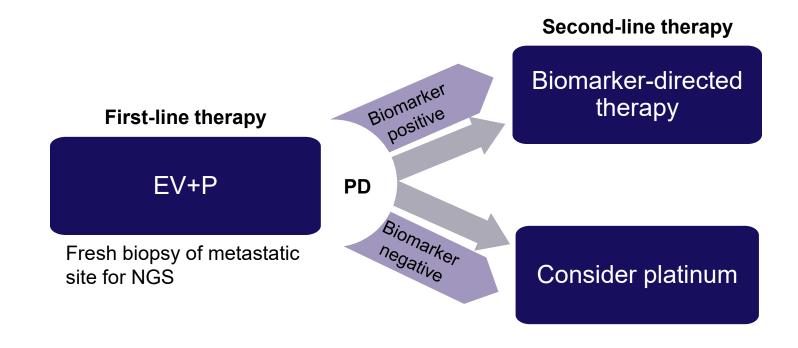

## Practical considerations for PBCT Does the patient have residual neuropathy due to EV treatment?

- Cisplatin induces long-term peripheral neuropathy in 30–40% of patients<sup>1</sup>
- The incidence of long-term peripheral neuropathy is the same with carboplatin, but severity of symptoms is milder and onset is later<sup>1,2</sup>
- Both treatments are subject to "coasting" phenomenon: worsening neuropathy after treatment cessation<sup>1</sup>




## First step: Pathways for consideration of PBCT






### Practical considerations for taxanes



### Sequencing therapies when first-line EV+P is used









The optimal sequence of treatment after EV+P is yet to be defined<sup>1</sup>



PBCT retains activity after EV+P<sup>2</sup>



Targeted therapy is appropriate in patients expressing HER2/neu or FGFR2/3<sup>3,4</sup>



The patient's prior treatment-related toxicity should be considered during treatment selection<sup>1</sup>





# Please refer to the Korean PI for PADCEV® (enfortumab vedotin) via the following link or QR Code:





## Changes in clinical practice since the approval of EV monotherapy

#### **Dr Kaiwei Yang**

Deputy Chief Physician, Department of Urology, Peking University First Hospital, China

EV as first-line therapy is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer. Combination therapy with pembrolizumab.

EV as monotherapy is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 or programmed death-ligand 1 inhibitor, and have received a platinum-containing chemotherapy

1L, first line; EV, enfortumab vedotin; P, pembrolizumab;

PADCEV® (enfortumab vedotin). Prescribing Information

#### Adverse events should be reported.

For Korea, healthcare professionals are asked to report any suspected adverse reactions to Astellas Pharma Korea. Inc

(Telephone: +82 10 5254 3389; Email: safety-kr@kr.astellas.com)

Prescribing information is available at the end of this presentation. This promotional meeting is fully sponsored and supported by Astellas, including speaker-related honoraria and production of materials. It is intended for healthcare professionals only.







### **Disclaimers**

The information, views and opinions presented herein are those of the presenter, and the presenter is solely responsible for the materials being introduced in this presentation. Although patients' cases mentioned herein are actual cases, treatment may differ from local approval product information.

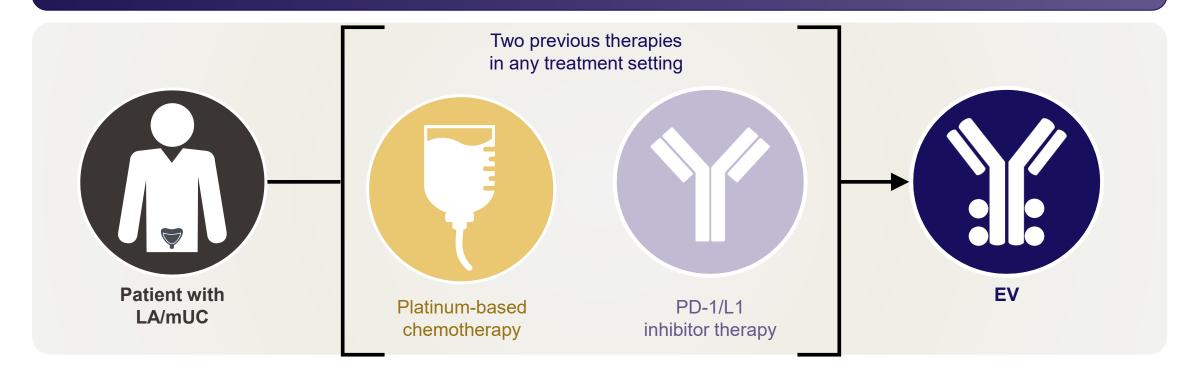
Such information, views and opinions of the presenter do not necessarily reflect the information, views and opinions of Astellas Pharma Ltd. Astellas Pharma Ltd. does not recommend the use of any product in any different manner than as described in the local approval information, and complies with all applicable laws, regulations, and company policies.

## Speaker disclosures

No disclosures.

### Contents

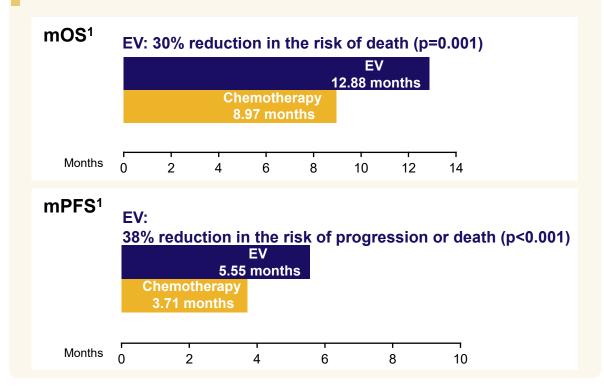



1 Approval and clinical positioning of EV monotherapy

Real-world analysis of the efficacy and safety of EV in patients with LA/mUC

3 Summary and reflection

## EV monotherapy is a treatment for patients with LA/mUC who have received previous platinum-based chemotherapy and a PD-1/L1 inhibitor


Based on the efficacy and safety data from the **pivotal Phase III EV-301 study**, EV as monotherapy is indicated for the treatment of adult patients with LA/mUC who have previously received a platinum-containing chemotherapy and a PD-1/L1 inhibitor<sup>1</sup>



## Reshaping the treatment landscape for patients who have progressed with chemotherapy or PD-1/L1 inhibitors



EV-301 study data demonstrated the superior efficacy of EV over chemotherapy in patients with aUC who had previously received treatment with platinum-based chemotherapy and PD-1/L1 inhibitors<sup>1</sup>



Based on the positive results of the EV-301 study, major guidelines list EV monotherapy as a preferred regimen for patients with LA/mUC post-chemotherapy immunotherapy (no previous EV)<sup>2-4</sup>

EV now plays an important role in the evolving treatment paradigm of LA/mUC,<sup>5</sup> but does real-world clinical practice reflect the clinical trial data?

aUC, advanced urothelial carcinoma; EV, enfortumab vedotin; LA/mUC, locally advanced/metastatic urothelial carcinoma; mOS, median overall survival; mPFS, median progression-free survival; PD-1/L1, programmed cell death protein 1/ligand.

<sup>1.</sup> Powles T et al. *N Engl J Med* 2021;384:1125–1135; 2.Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Bladder Cancer V.1.2025. © 2025 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and illustrations herein may not be reproduced in any form for any purpose without the express written permission of NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available.; 3. EAU. Muscle-invasive and metastatic bladder cancer.

Available at: https://www.uroweb.org/guidelines/muscle-invasive-and-metastatic-bladder-cancer. Last accessed: March 2025: 4. Powles T et al. *Ann Oncol* 2024;35:485–490: 5. Nakamura Y et al. *Clin Genitourin Cancer* 2025;23:102301.

### Contents



1 Approval and clinical positioning of EV monotherapy

Real-world analysis of the efficacy and safety of EV in patients with LA/mUC

3 Summary and reflection

### Does real-world clinical practice reflect the clinical trial data?

#### RCT vs. RWE<sup>1</sup>

## RCT results need validation in diverse real-world clinical settings<sup>1</sup>

- In contrast to the highly selected patient population included in clinical trials, RWE bridges the gap between results in the RCT setting and real-world clinical practice<sup>2</sup>
- Strict trial criteria limit the generalizability of RCT data, but RWE extends findings to broader populations<sup>1</sup>

|                            | RCT                                              | RWE                                                              |
|----------------------------|--------------------------------------------------|------------------------------------------------------------------|
| Setting                    | Experimental or interventional setting           | Real-world setting or observational or noninterventional setting |
| Study conduct              | Protocol-based, GCP-compliant                    | Real-life clinical practice                                      |
| Treatment                  | Fixed pattern                                    | Variable pattern                                                 |
| Participant population     | Strict and many inclusion and exclusion criteria | Very few inclusion and exclusion criteria                        |
| Attending physician        | Investigator                                     | Practitioner                                                     |
| Comparator                 | Placebo/selective alternative interventions      | Either no control arm or standard treatment or care              |
| Outcome                    | Efficacy                                         | Effectiveness                                                    |
| Randomization and blinding | Yes                                              | No                                                               |
|                            |                                                  |                                                                  |

## Real-world evidence for EV monotherapy in patients with LA/mUC



Real-world analyses have further confirmed the efficacy and safety profile of EV monotherapy, providing support for its use in a broad patient population

#### UNITE study<sup>1</sup>

#### **Patients:**

N=304 aUC

## Median follow-up (from the start of EV):

7.2 months

#### Results:

mOS: 14.4 months

mPFS: 6.8 months

 ORR (investigatorassessed): 52%

### European multicenter RWE<sup>2</sup>

#### **Patients:**

N=188 mUC

#### Median follow-up:

11 months

#### Results:

mOS: 12.0 months

mPFS: 7.0 months

• ORR: 46.3%

#### YUSHIMA Study-04<sup>3</sup>

#### Patients:

N=115 mUC

#### Median follow-up:

7.1 months

#### Results:

mOS: 12.9 months

mPFS: 6.7 months

• ORR: 49%

## Japan multicenter retrospective study<sup>4</sup>

#### Patients:

N=419 LA/mUC

#### **Methods:**

Chemo-alone; chemo-ICI; chemo-ICI-EV

#### **Results:**

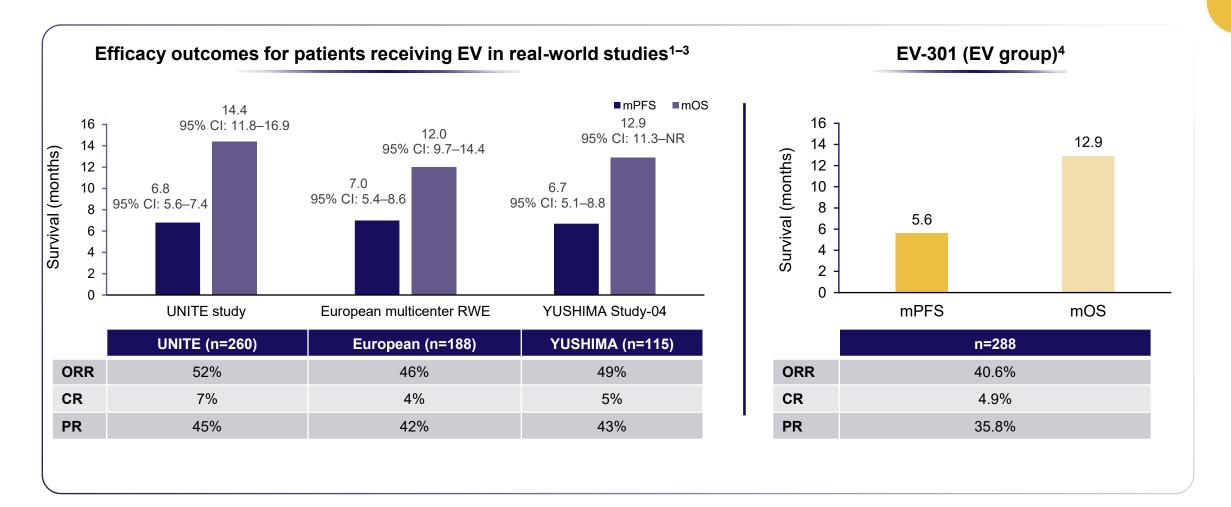
 mOS: Significantly longer in the chemo-ICI-EV group vs. other chemo or chemo-ICI

124

## Baseline characteristics of patients included in real-world studies

Real-world studies evaluated the effectiveness of EV in broad patient populations, including older patients, those with comorbidities, and patients with poorer performance status compared with the EV-301 study<sup>1–3</sup>

| Baseline characteristic                      | UNITE study¹<br>(EV, n=260) | European<br>multicenter RWE<br>(n=188) <sup>2</sup> | YUSHIMA Study-04<br>(EV, n=115) <sup>3</sup> | Japan multicenter<br>retrospective study<br>(chemo-ICI-EV,<br>n=115) <sup>4</sup> | EV-301<br>(EV, n=301) <sup>5</sup> |
|----------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|
| Median age (range), years                    | 71*                         | 66 (31–89)                                          | 74 (34–85)                                   | 74 (23–89)                                                                        | 68.0 (34.0–85.0)                   |
| Sex, n (%)                                   |                             |                                                     |                                              |                                                                                   |                                    |
| Female                                       | 55 (21)                     | 61 (32.4)                                           | 30 (26)                                      | -                                                                                 | 63 (20.9)                          |
| Male                                         | 205 (79)                    | 127 (76.6)                                          | 85 (74)                                      | 83 (72)                                                                           | 238 (75.6)                         |
| ECOG PS, %                                   |                             |                                                     |                                              |                                                                                   |                                    |
| 0–1                                          | 79                          | 75                                                  | 84                                           | -                                                                                 | 100                                |
| ≥2                                           | 20.4                        | 14                                                  | 16                                           | 10                                                                                | Excluded                           |
| Location of primary tumor, n (%)             |                             |                                                     |                                              |                                                                                   |                                    |
| Bladder/other site                           | 190 (73.4)                  | -                                                   | 56 (49)                                      | -                                                                                 | 203 (67.4)                         |
| Upper tract                                  | 65 (25)                     | _                                                   | 59 (51)                                      | 52 (45)                                                                           | 98 (32.6)                          |
| Metastasis, n (%)                            |                             |                                                     |                                              |                                                                                   |                                    |
| Lymph node                                   | 52 (20)                     | _                                                   | 93 (80)                                      | 54 (47)                                                                           | 34 (11.3)                          |
| Liver metastasis                             | 84 (32)                     | -                                                   | 24 (21)                                      | 15 (13)                                                                           | 93 (30.9)                          |
| ≥3 previous lines of systemic therapy, n (%) | 64 (25)                     | -                                                   | 115 (100)                                    | -                                                                                 | 39 (13.0)                          |
| Histology, n (%)                             |                             |                                                     |                                              |                                                                                   |                                    |
| Pure urothelial                              | 177 (68)                    | _                                                   | 97 (84)                                      | -                                                                                 | -                                  |
| UC with variant histology                    | 8 (3)                       | -                                                   | 14 (12)                                      | -                                                                                 |                                    |


Studies are show for illustrative purposes and should not be directly compared.

<sup>\*</sup>Range not available. chemo, chemotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; EV, enfortumab vedotin; ICI, immune checkpoint inhibitor; RWE, real-world evidence; UC, urothelial carcinoma.

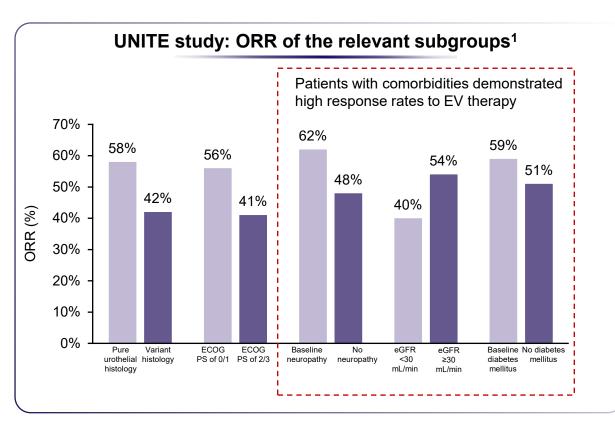
1. Koshkin VS et al. *Cancer* 2022;128:1194–1205; 2. Zschaebitz S et al. *J Clin Oncol* 2024;42:suppl 553; 3. Nakamura Y et al. *Clin Genitourin Cancer* 2025;23:102301; 4. Hatakeyama S et al. *J Clin Oncol* 2025;43:suppl 712;

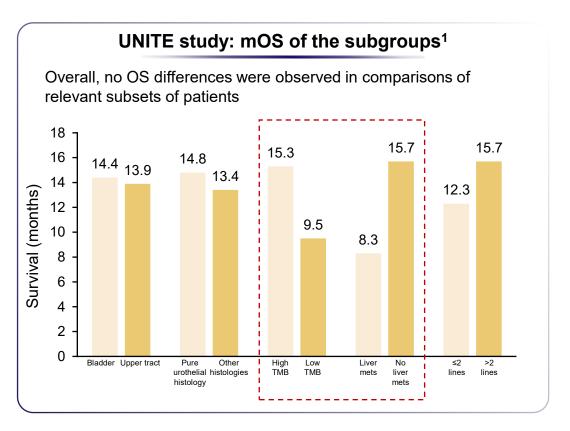
<sup>5.</sup> Powles T et al. *N Engl J Med* 2021;384:1125–1135.

## Real-world outcomes for OS, PFS, and ORR are comparable with those from the EV-301 trial



#### Studies are show for illustrative purposes and should not be directly compared.

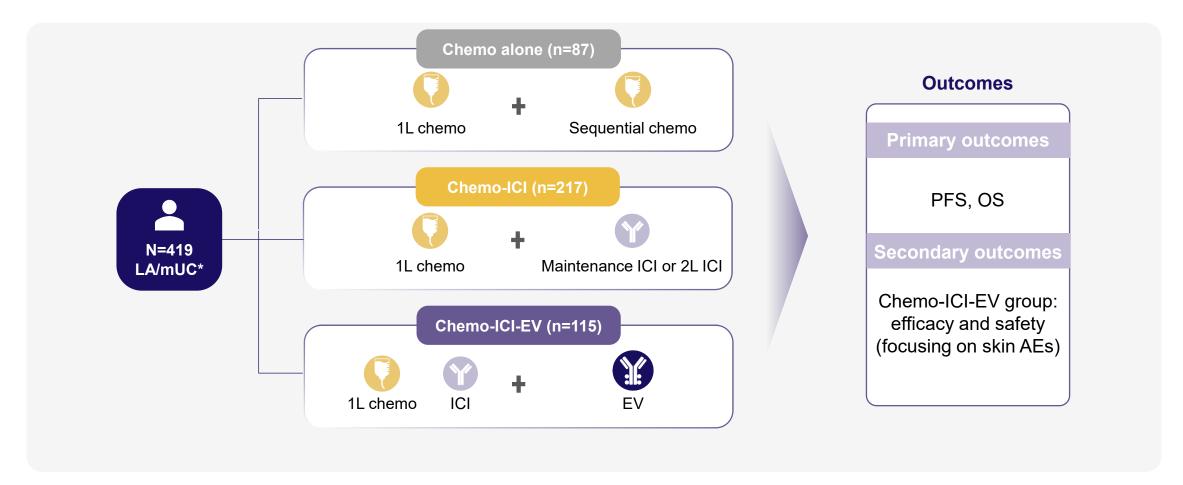

CI, confidence interval; CR, complete response; EV, enfortumab vedotin; mOS, median overall survival; mPFS, median progression-free survival; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; RWE, real-world evidence.


## The UNITE study results showed that EV has robust

activity in clinically relevant patient subgroups

In clinically relevant patient subgroups, EV demonstrated robust activity, including for patients with variant histology, those with a poor performance status (ECOG PS >1), and those with relevant medical comorbidities (e.g., peripheral neuropathy and diabetes mellitus), among others<sup>1</sup>

Given variations in completeness of subgroup efficacy disclosure across studies, we conducted a focused analysis of the UNITE study's subgroup outcomes.






ECOG PS, Eastern Cooperative Oncology Group performance status; eGFR, estimated glomerular filtration rate; EV, enfortumab vedotin; met, metastasis; mOS, median overall survival; ORR, objective response rate; OS. overall survival: TMB. tumor mutational burden.

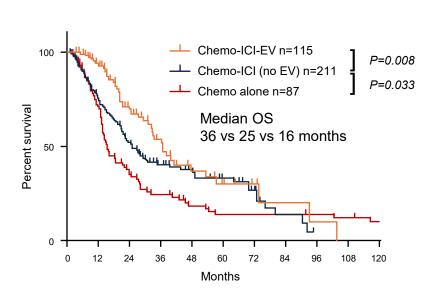
## Asian patient population: Japan multicenter retrospective study design

The aim was to evaluate the efficacy and safety profile of EV in patients with LA/mUC in a real-world clinical practice setting<sup>1</sup>



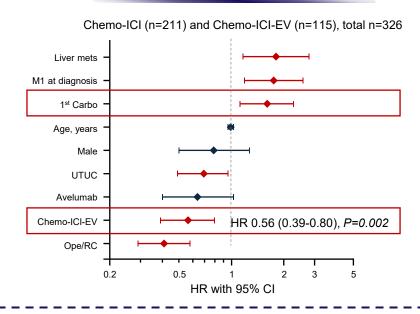
<sup>\*</sup>Included 419 patients treated for LA/mUC between April 2004 to April 2024.

<sup>1</sup>L, first line; 2L, second line; AE, adverse event; chemo, chemotherapy; EV, enfortumab vedotin; ICI, immune checkpoint inhibitor; LA/mUC, locally advanced/metastatic urothelial carcinoma; OS, overall survival; PFS, progression-free survival.


<sup>1.</sup> Hatakeyama S et al. J Clin Oncol 2025;43:suppl 712.

## Asian patient population: Japan multicenter retrospective study OS




The outcomes further confirmed the efficacy of EV monotherapy in patients with LA/mUC who had received prior chemo and ICI treatment<sup>1\*</sup>

#### OS from 1L therapy (unadjusted)<sup>2</sup>



The OS from 1L therapy was significantly longer in the chemo-ICI-EV group than in the other groups<sup>2</sup>

#### Cox regression analysis for OS from 1L therapy<sup>2</sup>

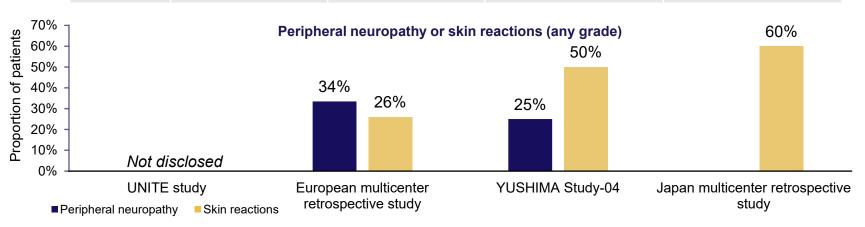


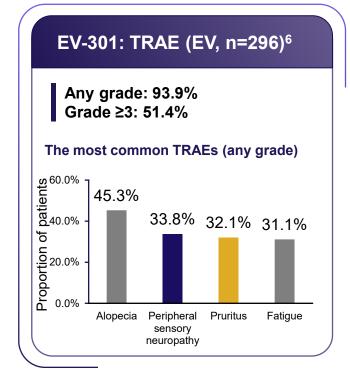
The administration of EV was significantly associated with prolonged OS<sup>2</sup>

<sup>\*</sup>Included 419 patients treated for LA/mUC between April 2004 to April 2024.

<sup>1</sup>L, first line; carbo, carboplatin; chemo, chemotherapy; CI, confidence interval; EV, enfortumab vedotin; HR, hazard ratio; ICI, immune checkpoint inhibitor; LA/mUC, locally advanced/metastatic urothelial carcinoma; met, metastasis; Ope/RC, open radical cystectomy; OS, overall survival; UTUC, upper-tract urothelial carcinoma.

<sup>1.</sup> Hatakeyama S et al. J Clin Oncol 2025;43:suppl 712; 2. Ozaki K et al. J Urol 2025;213:e1281.

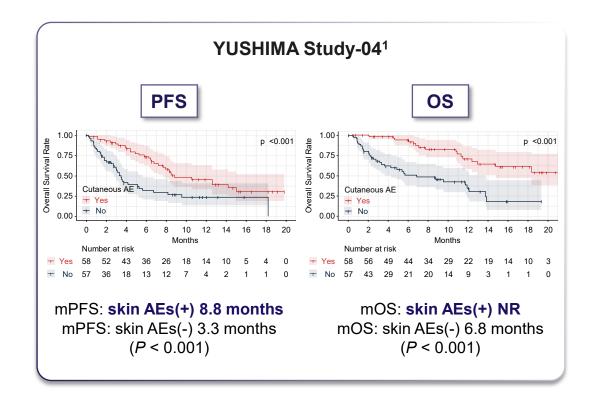

## Safety: No new safety signals were identified in the real-world setting

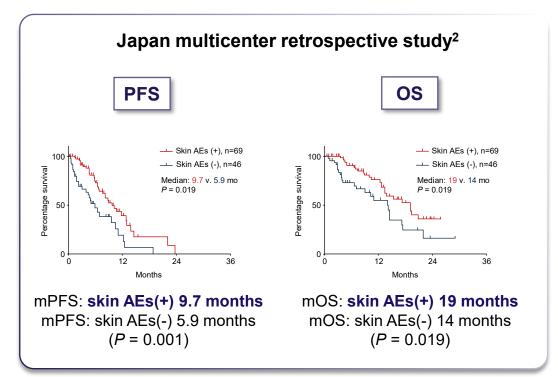



- No new safety signals were observed
- The incidence rates of any grade or Grade ≥3 TRAEs observed in the real-world studies were numerically lower than those reported in the EV-301 study
- Skin reactions and peripheral neuropathy were the most common TRAEs

#### **Real-world studies: TRAE**

|           | UNITE study⁵<br>(EV, n=260) | European<br>multicenter RWE¹<br>(n=188) | YUSHIMA Study-04 <sup>2</sup><br>(n=115) | Japan multicenter<br>retrospective study⁴<br>(chemo-ICI-EV, n=115) |
|-----------|-----------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------------------------------|
| Any grade | -                           | 71%                                     | 77%                                      | -                                                                  |
| Grade ≥3  | _                           | 32%                                     | 25%                                      | -                                                                  |



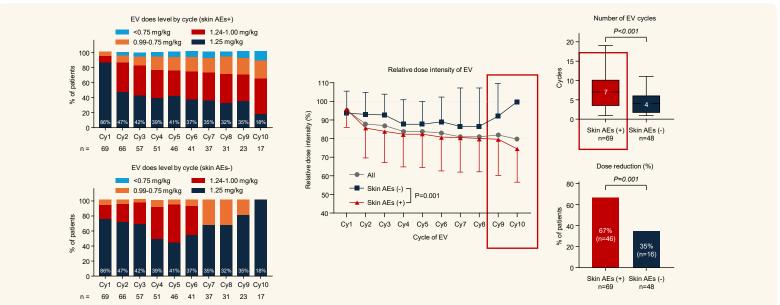




chemo, chemotherapy; EV, enfortumab vedotin; ICI, immune checkpoint inhibitor; RWE, real-world evidence; TRAE, treatment-related adverse event.

<sup>1.</sup> Zschaebitz S et al. *J Clin Oncol* 2024;42:suppl 553; 2. Nakamura Y et al. *Clin Genitourin Cancer* 2025;23:102301; 3. Niedersuess-Beke D et al. *Clin Genitourin Cancer* 2025;23:102278;

## Asian patient population: Outcomes and occurrence of skin reactions\*






This information has not been validated through pivotal or large-scale studies. This multivariable Cox regression analysis indicates that patients experiencing skin AEs may have prolonged PFS and OS compared with those without\*1,2

### Appropriate monitoring and management of AEs can minimize the impact of TRAEs, helping to optimize EV outcomes in clinical practice



Japan multicenter retrospective study:<sup>1,2</sup>
The impact of skin AEs on dose reduction\*



- Patients with skin AEs experienced reduced dose stability across treatment cycles, compared with those without<sup>1</sup>
- Dose reduction in patients with skin AEs enabled prolonged treatment duration while maintaining clinical benefits<sup>1</sup>



The occurrence of cutaneous AEs does not equate to inferior therapeutic efficacy

Effective monitoring and management of AEs, including dose adjustments, may support long-term administration of EV, helping to optimize treatment outcomes for patients<sup>2</sup>

<sup>\*</sup>Disclaimer: This information has not been validated through pivotal or large-scale studies. Data are included here as part of the speaker's personal scientific opinion. Treatment with EV should always be initiated at the recommended dosage. Always refer to local guidance.

AE, adverse event; EV, enfortumab vedotin; TRAE, treatment-related adverse event.

<sup>132</sup> 

### Contents



1 Approval and clinical positioning of EV monotherapy

Real-world analysis of the efficacy and safety of EV in patients with LA/mUC

3 Summary and reflection

### Summary

#### EV has become a preferred treatment option for subsequent line therapies<sup>1,2</sup>



The emergence of ADCs has inaugurated the precision oncology era in UC therapeutics. EV, the first Nectin-4–directed ADC, has established its therapeutic position in aUC through the pivotal Phase III EV-301 trial<sup>3</sup>

#### Treatment efficacy and TRAEs in real-world studies were consistent with results of the EV-301 study<sup>4–6</sup>



- Patients receiving EV after 1L chemotherapy +/or ICI demonstrated better treatment outcomes vs those who did not<sup>4</sup>
- EV maintains clinically meaningful efficacy across clinically relevant subgroups of patients with aUC, including patients with a poor performance status, patients with a low eGFR, and patients with relevant medical comorbidities (e.g., peripheral neuropathy and diabetes mellitus)<sup>5</sup>
- Interruption or dose reduction of EV is unlikely to compromise its efficacy; early identification of TRAEs and appropriate dose adjustments may enhance the safe long-term administration of EV and maximize its effectiveness in clinical practice<sup>6</sup>
- The presence of cutaneous AEs was independently and significantly associated with prolonged PFS and OS,<sup>4,6\*</sup> and may be useful for risk stratification and tailored treatment strategies<sup>6†</sup>



#### Large-scale reports of real-world treatment efficacy, AEs, and prognostic factors for EV monotherapy are limited<sup>6</sup>

Real-world studies may have some limitations, including reporting and documentation bias and missing data, but these results provide important insights and provide a basis for the use of EV in a broad patient population

<sup>\*</sup>Disclaimer: This information has not been validated through pivotal or large-scale studies. Data are included here as part of the speaker's personal scientific opinion. Treatment with EV should always be initiated at the recommended dosage. Always refer to local guidance. †Speakers expert opinion.

<sup>1</sup>L, first line; ADC, antibody–drug conjugate; AE, adverse event; aUC, advanced urothelial carcinoma; eGFR, estimated glomerular filtration rate; EV, enfortumab vedotin; ICI, immune checkpoint inhibitor; OS, overall survival; PFS, progression-free survival; TRAE, treatment-related adverse event; UC, urothelial carcinoma.

<sup>1.</sup> Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Bladder Cancer V.1.2025. © 2025 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and illustrations herein may not be reproduced in any form for any purpose without the express written permission of NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available.; 2. Powles T et al. *Ann Oncol* 2024;35:485–490.

<sup>3.</sup> Powles T et al. N Engl J Med 2021;384:1125–1135; 4. Hatakeyama S et al. J Clin Oncol 2025;43:suppl 712; 5. Koshkin VS et al. Cancer 2022;128:1194–1205; 6. Nakamura Y et al. Clin Genitourin Cancer 2025;23:102301.





# Please refer to the Korean PI for PADCEV® (enfortumab vedotin) via the following link or QR Code:

